1
|
Bogdanova YA, Solovyev ID, Baleeva NS, Myasnyanko IN, Gorshkova AA, Gorbachev DA, Gilvanov AR, Goncharuk SA, Goncharuk MV, Mineev KS, Arseniev AS, Bogdanov AM, Savitsky AP, Baranov MS. Fluorescence lifetime multiplexing with fluorogen activating protein FAST variants. Commun Biol 2024; 7:799. [PMID: 38956304 PMCID: PMC11219735 DOI: 10.1038/s42003-024-06501-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 06/24/2024] [Indexed: 07/04/2024] Open
Abstract
In this paper, we propose a fluorescence-lifetime imaging microscopy (FLIM) multiplexing system based on the fluorogen-activating protein FAST. This genetically encoded fluorescent labeling platform employs FAST mutants that activate the same fluorogen but provide different fluorescence lifetimes for each specific protein-dye pair. All the proposed probes with varying lifetimes possess nearly identical and the smallest-in-class size, along with quite similar steady-state optical properties. In live mammalian cells, we target these chemogenetic tags to two intracellular structures simultaneously, where their fluorescence signals are clearly distinguished by FLIM. Due to the unique structure of certain fluorogens under study, their complexes with FAST mutants display a monophasic fluorescence decay, which may facilitate enhanced multiplexing efficiency by reducing signal cross-talks and providing optimal prerequisites for signal separation upon co-localized and/or spatially overlapped labeling.
Collapse
Affiliation(s)
- Yulia A Bogdanova
- Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya 16/10, 117997, Moscow, Russia
| | - Ilya D Solovyev
- A.N. Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, 119071, Moscow, Russia
| | - Nadezhda S Baleeva
- Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya 16/10, 117997, Moscow, Russia
- Pirogov Russian National Research Medical University, Ostrovitianov 1, Moscow, 117997, Russia
| | - Ivan N Myasnyanko
- Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya 16/10, 117997, Moscow, Russia
- Pirogov Russian National Research Medical University, Ostrovitianov 1, Moscow, 117997, Russia
| | - Anastasia A Gorshkova
- Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya 16/10, 117997, Moscow, Russia
| | - Dmitriy A Gorbachev
- Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya 16/10, 117997, Moscow, Russia
| | - Aidar R Gilvanov
- Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya 16/10, 117997, Moscow, Russia
| | - Sergey A Goncharuk
- Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya 16/10, 117997, Moscow, Russia
| | - Marina V Goncharuk
- Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya 16/10, 117997, Moscow, Russia
| | - Konstantin S Mineev
- Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya 16/10, 117997, Moscow, Russia
- Goethe University Frankfurt, Frankfurt am Main, 60433, Germany
| | - Alexander S Arseniev
- Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya 16/10, 117997, Moscow, Russia
| | - Alexey M Bogdanov
- Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya 16/10, 117997, Moscow, Russia
- Department of Photonics, İzmir Institute of Technology, 35430, İzmir, Turkey
| | - Alexander P Savitsky
- A.N. Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, 119071, Moscow, Russia
| | - Mikhail S Baranov
- Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya 16/10, 117997, Moscow, Russia.
- Pirogov Russian National Research Medical University, Ostrovitianov 1, Moscow, 117997, Russia.
- Department of Biology, Lomonosov Moscow State University, Moscow, 119991 Russia, 121205, Moscow, Russia.
| |
Collapse
|
2
|
Baleeva NS, Bogdanova YA, Goncharuk MV, Sokolov AI, Myasnyanko IN, Kublitski VS, Smirnov AY, Gilvanov AR, Goncharuk SA, Mineev KS, Baranov MS. A Combination of Library Screening and Rational Mutagenesis Expands the Available Color Palette of the Smallest Fluorogen-Activating Protein Tag nanoFAST. Int J Mol Sci 2024; 25:3054. [PMID: 38474299 DOI: 10.3390/ijms25053054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 03/01/2024] [Accepted: 03/04/2024] [Indexed: 03/14/2024] Open
Abstract
NanoFAST is the smallest fluorogen-activating protein, consisting of only 98 amino acids, used as a genetically encoded fluorescent tag. Previously, only a single fluorogen with an orange color was revealed for this protein. In the present paper, using rational mutagenesis and in vitro screening of fluorogens libraries, we expanded the color palette of this tag. We discovered that E46Q is one of the key substitutions enabling the range of possible fluorogens to be expanded. The introduction of this and several other substitutions has made it possible to use not only orange but also red and green fluorogens with the modified protein.
Collapse
Affiliation(s)
- Nadezhda S Baleeva
- Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya 16/10, 117997 Moscow, Russia
- Laboratory of Medicinal Substances Chemistry, Institute of Translational Medicine, Pirogov Russian National Research Medical University, Ostrovitianov 1, 117997 Moscow, Russia
| | - Yulia A Bogdanova
- Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya 16/10, 117997 Moscow, Russia
| | - Marina V Goncharuk
- Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya 16/10, 117997 Moscow, Russia
| | - Anatolii I Sokolov
- Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya 16/10, 117997 Moscow, Russia
- Laboratory of Medicinal Substances Chemistry, Institute of Translational Medicine, Pirogov Russian National Research Medical University, Ostrovitianov 1, 117997 Moscow, Russia
| | - Ivan N Myasnyanko
- Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya 16/10, 117997 Moscow, Russia
- Laboratory of Medicinal Substances Chemistry, Institute of Translational Medicine, Pirogov Russian National Research Medical University, Ostrovitianov 1, 117997 Moscow, Russia
| | - Vadim S Kublitski
- Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya 16/10, 117997 Moscow, Russia
| | - Alexander Yu Smirnov
- Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya 16/10, 117997 Moscow, Russia
- Laboratory of Medicinal Substances Chemistry, Institute of Translational Medicine, Pirogov Russian National Research Medical University, Ostrovitianov 1, 117997 Moscow, Russia
| | - Aidar R Gilvanov
- Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya 16/10, 117997 Moscow, Russia
| | - Sergey A Goncharuk
- Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya 16/10, 117997 Moscow, Russia
| | - Konstantin S Mineev
- Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya 16/10, 117997 Moscow, Russia
| | - Mikhail S Baranov
- Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya 16/10, 117997 Moscow, Russia
- Laboratory of Medicinal Substances Chemistry, Institute of Translational Medicine, Pirogov Russian National Research Medical University, Ostrovitianov 1, 117997 Moscow, Russia
| |
Collapse
|
3
|
Nadal Rodríguez P, Ghashghaei O, Schoepf AM, Benson S, Vendrell M, Lavilla R. Charting the Chemical Reaction Space around a Multicomponent Combination: Controlled Access to a Diverse Set of Biologically Relevant Scaffolds. Angew Chem Int Ed Engl 2023; 62:e202303889. [PMID: 37191208 PMCID: PMC10952796 DOI: 10.1002/anie.202303889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 05/04/2023] [Accepted: 05/15/2023] [Indexed: 05/17/2023]
Abstract
Charting the chemical reaction space around the combination of carbonyls, amines, and isocyanoacetates allows the description of new multicomponent processes leading to a variety of unsaturated imidazolone scaffolds. The resulting compounds display the chromophore of the green fluorescent protein and the core of the natural product coelenterazine. Despite the competitive nature of the pathways involved, general protocols provide selective access to the desired chemotypes. Moreover, we describe unprecedented reactivity at the C-2 position of the imidazolone core to directly afford C, S, and N-derivatives featuring natural products (e.g. leucettamines), potent kinase inhibitors, and fluorescent probes with suitable optical and biological profiles.
Collapse
Affiliation(s)
- Pau Nadal Rodríguez
- Department of Medicinal ChemistryFaculty of Pharmacy and Food SciencesUniversity of Barcelona and Institute of Biomedicine UB (IBUB)Av. De Joan XXIII, 27–3108028BarcelonaSpain
| | - Ouldouz Ghashghaei
- Department of Medicinal ChemistryFaculty of Pharmacy and Food SciencesUniversity of Barcelona and Institute of Biomedicine UB (IBUB)Av. De Joan XXIII, 27–3108028BarcelonaSpain
| | - Anna M. Schoepf
- Department of Medicinal ChemistryFaculty of Pharmacy and Food SciencesUniversity of Barcelona and Institute of Biomedicine UB (IBUB)Av. De Joan XXIII, 27–3108028BarcelonaSpain
| | - Sam Benson
- Centre for Inflammation ResearchThe University of EdinburghEdinburghUK
| | - Marc Vendrell
- Centre for Inflammation ResearchThe University of EdinburghEdinburghUK
| | - Rodolfo Lavilla
- Department of Medicinal ChemistryFaculty of Pharmacy and Food SciencesUniversity of Barcelona and Institute of Biomedicine UB (IBUB)Av. De Joan XXIII, 27–3108028BarcelonaSpain
| |
Collapse
|
4
|
Nadal Rodríguez P, Ghashghaei O, Schoepf AM, Benson S, Vendrell M, Lavilla R. Charting the Chemical Reaction Space around a Multicomponent Combination: Controlled Access to a Diverse Set of Biologically Relevant Scaffolds. ANGEWANDTE CHEMIE (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 135:e202303889. [PMID: 38516006 PMCID: PMC10952208 DOI: 10.1002/ange.202303889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Indexed: 03/23/2024]
Abstract
Charting the chemical reaction space around the combination of carbonyls, amines, and isocyanoacetates allows the description of new multicomponent processes leading to a variety of unsaturated imidazolone scaffolds. The resulting compounds display the chromophore of the green fluorescent protein and the core of the natural product coelenterazine. Despite the competitive nature of the pathways involved, general protocols provide selective access to the desired chemotypes. Moreover, we describe unprecedented reactivity at the C-2 position of the imidazolone core to directly afford C, S, and N-derivatives featuring natural products (e.g. leucettamines), potent kinase inhibitors, and fluorescent probes with suitable optical and biological profiles.
Collapse
Affiliation(s)
- Pau Nadal Rodríguez
- Department of Medicinal ChemistryFaculty of Pharmacy and Food SciencesUniversity of Barcelona and Institute of Biomedicine UB (IBUB)Av. De Joan XXIII, 27–3108028BarcelonaSpain
| | - Ouldouz Ghashghaei
- Department of Medicinal ChemistryFaculty of Pharmacy and Food SciencesUniversity of Barcelona and Institute of Biomedicine UB (IBUB)Av. De Joan XXIII, 27–3108028BarcelonaSpain
| | - Anna M. Schoepf
- Department of Medicinal ChemistryFaculty of Pharmacy and Food SciencesUniversity of Barcelona and Institute of Biomedicine UB (IBUB)Av. De Joan XXIII, 27–3108028BarcelonaSpain
| | - Sam Benson
- Centre for Inflammation ResearchThe University of EdinburghEdinburghUK
| | - Marc Vendrell
- Centre for Inflammation ResearchThe University of EdinburghEdinburghUK
| | - Rodolfo Lavilla
- Department of Medicinal ChemistryFaculty of Pharmacy and Food SciencesUniversity of Barcelona and Institute of Biomedicine UB (IBUB)Av. De Joan XXIII, 27–3108028BarcelonaSpain
| |
Collapse
|
5
|
Chen C, Zhang H, Zhang J, Ai HW, Fang C. Structural origin and rational development of bright red noncanonical variants of green fluorescent protein. Phys Chem Chem Phys 2023; 25:15624-15634. [PMID: 37211909 PMCID: PMC10330862 DOI: 10.1039/d3cp01315d] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The incorporation of noncanonical amino acids (ncAAs) into fluorescent proteins is promising for red-shifting their fluorescence and benefiting tissue imaging with deep penetration and low phototoxicity. However, ncAA-based red fluorescent proteins (RFPs) have been rare. The 3-aminotyrosine modified superfolder green fluorescent protein (aY-sfGFP) represents a recent advance, yet the molecular mechanism for its red-shifted fluorescence remains elusive while its dim fluorescence hinders applications. Herein, we implement femtosecond stimulated Raman spectroscopy to obtain structural fingerprints in the electronic ground state and reveal that aY-sfGFP possesses a GFP-like instead of RFP-like chromophore. Red color of aY-sfGFP intrinsically arises from a unique "double-donor" chromophore structure that raises ground-state energy and enhances charge transfer, notably differing from the conventional conjugation mechanism. We further developed two aY-sfGFP mutants (E222H and T203H) with significantly improved (∼12-fold higher) brightness by rationally restraining the chromophore's nonradiative decay through electronic and steric effects, aided by solvatochromic and fluorogenic studies of the model chromophore in solution. This study thus provides functional mechanisms and generalizable insights into ncAA-RFPs with an efficient route for engineering redder and brighter fluorescent proteins.
Collapse
Affiliation(s)
- Cheng Chen
- Department of Chemistry, Oregon State University, 153 Gilbert Hall, Corvallis, Oregon 97331, USA.
| | - Hao Zhang
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, USA.
- Department of Molecular Physiology and Biological Physics and Center for Membrane and Cell Physiology, University of Virginia School of Medicine, Charlottesville, Virginia 22908, USA
| | - Jing Zhang
- Department of Molecular Physiology and Biological Physics and Center for Membrane and Cell Physiology, University of Virginia School of Medicine, Charlottesville, Virginia 22908, USA
| | - Hui-Wang Ai
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, USA.
- Department of Molecular Physiology and Biological Physics and Center for Membrane and Cell Physiology, University of Virginia School of Medicine, Charlottesville, Virginia 22908, USA
- The UVA Comprehensive Cancer Center, University of Virginia, Charlottesville, Virginia 22908, USA
| | - Chong Fang
- Department of Chemistry, Oregon State University, 153 Gilbert Hall, Corvallis, Oregon 97331, USA.
| |
Collapse
|
6
|
Gautier A. Fluorescence-Activating and Absorption-Shifting Tags for Advanced Imaging and Biosensing. Acc Chem Res 2022; 55:3125-3135. [PMID: 36269101 DOI: 10.1021/acs.accounts.2c00098] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Fluorescent labels and biosensors play central roles in biological and medical research. Targeted to specific biomolecules or cells, they allow noninvasive imaging of the machinery that govern cells and organisms in real time. Recently, chemogenetic reporters made of organic dyes specifically anchored to genetic tags have challenged the paradigm of fully genetically encoded fluorescent proteins. Combining the advantage of synthetic fluorophores with the targeting selectivity of genetically encoded tags, these chemogenetic reporters open new exciting prospects for studying cell biochemistry and biology. In this Account, we present the growing toolbox of fluorescence-activating and absorption-shifting tags (FASTs), small monomeric proteins of 14 kDa (125 amino acids residues) that can be used as markers to monitor gene expression and protein localization in live cells and organisms. Engineered by directed protein evolution from the photoactive yellow protein (PYP) from the bacterium Halorhodospira halophila, prototypical FAST binds and stabilizes the fluorescent state of live-cell compatible hydroxybenzylidene rhodanine chromophores. This class of chromophores are normally dark when free in solution or in cells because they dissipate light energy through nonradiative processes. The protein cavity of FAST allows the stabilization of the deprotonated state of the chromophore and blocks the chromophore into a planar conformation, which leads to highly fluorescent protein-chromophore assemblies. The use of such fluorogenic dyes (also called fluorogens) enables the imaging of FAST fusion proteins in cells with high contrast without the need to remove unbound ligands through separate washing steps. Fluorogens with various spectral properties exist nowadays allowing investigators to adjust the spectral properties of FAST to their experimental conditions. Molecular engineering allowed furthermore to generate membrane-impermeant fluorogens for the selective labeling of cell-surface proteins. Over the years, we generated a collection of FAST variants with expanded spectral properties or fluorogen selectivity using a concerted strategy involving molecular engineering and directed protein evolution. Moreover, protein engineering allowed us to adapt FASTs for the design of fluorescent biosensors. Circular permutation enabled the generation of FAST variants with increased conformational flexibility for the design of biosensors in which fluorogen binding is conditioned to the recognition of a given analyte. Bisection of FASTs into two complementary fragments allowed us furthermore to create split variants with reversible complementation that allow the detection and imaging of dynamic protein-protein interactions. We provide, here, a general overview of the current state of development of these different systems and their applications for advanced live cell imaging and biosensing and discuss potential future directions.
Collapse
Affiliation(s)
- Arnaud Gautier
- Sorbonne Université, École Normale Supérieure, Université PSL, CNRS, Laboratoire des Biomolécules, LBM, 75005 Paris, France.,Institut Universitaire de France, 75005 Paris, France
| |
Collapse
|
7
|
Goncharuk MV, Baleeva NS, Nolde DE, Gavrikov AS, Mishin AV, Mishin AS, Sosorev AY, Arseniev AS, Goncharuk SA, Borshchevskiy VI, Efremov RG, Mineev KS, Baranov MS. Structure-based rational design of an enhanced fluorogen-activating protein for fluorogens based on GFP chromophore. Commun Biol 2022; 5:706. [PMID: 35840781 PMCID: PMC9287381 DOI: 10.1038/s42003-022-03662-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 06/29/2022] [Indexed: 11/16/2022] Open
Abstract
"Fluorescence-Activating and absorption-Shifting Tag" (FAST) is a well-studied fluorogen-activating protein with high brightness and low size, able to activate a wide range of fluorogens. This makes FAST a promising target for both protein and fluorogen optimization. Here, we describe the structure-based rational design of the enhanced FAST mutants, optimized for the N871b fluorogen. Using the spatial structure of the FAST/N871b complex, NMR relaxation analysis, and computer simulations, we identify the mobile regions in the complex and suggest mutations that could stabilize both the protein and the ligand. Two of our mutants appear brighter than the wild-type FAST, and these mutants provide up to 35% enhancement for several other fluorogens of similar structure, both in vitro and in vivo. Analysis of the mutants by NMR reveals that brighter mutants demonstrate the highest stability and lowest length of intermolecular H-bonds. Computer simulations provide the structural basis for such stabilization.
Collapse
Affiliation(s)
- Marina V Goncharuk
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, Moscow, 117997, Russia
| | - Nadezhda S Baleeva
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, Moscow, 117997, Russia
| | - Dmitry E Nolde
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, Moscow, 117997, Russia
- National Research University Higher School of Economics, Moscow, 101000, Russia
| | - Alexey S Gavrikov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, Moscow, 117997, Russia
| | - Alexey V Mishin
- Moscow Institute of Physics and Technology, Dolgoprudny, 141701, Russia
| | - Alexander S Mishin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, Moscow, 117997, Russia
| | - Andrey Y Sosorev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, Moscow, 117997, Russia
| | - Alexander S Arseniev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, Moscow, 117997, Russia
| | - Sergey A Goncharuk
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, Moscow, 117997, Russia
- Moscow Institute of Physics and Technology, Dolgoprudny, 141701, Russia
| | | | - Roman G Efremov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, Moscow, 117997, Russia
- National Research University Higher School of Economics, Moscow, 101000, Russia
- Moscow Institute of Physics and Technology, Dolgoprudny, 141701, Russia
| | - Konstantin S Mineev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, Moscow, 117997, Russia.
- Moscow Institute of Physics and Technology, Dolgoprudny, 141701, Russia.
| | - Mikhail S Baranov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, Moscow, 117997, Russia.
- Pirogov Russian National Research Medical University, Moscow, 117997, Russia.
| |
Collapse
|
8
|
Tang L, Fang C. Fluorescence Modulation by Ultrafast Chromophore Twisting Events: Developing a Powerful Toolset for Fluorescent-Protein-Based Imaging. J Phys Chem B 2021; 125:13610-13623. [PMID: 34883016 DOI: 10.1021/acs.jpcb.1c08570] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The advancement of modern life sciences has benefited tremendously from the discovery and development of fluorescent proteins (FPs), widely expressed in live cells to track a myriad of cellular events. The chromophores of various FPs can undergo many ultrafast photophysical and/or photochemical processes in the electronic excited state and emit fluorescence with different colors. However, the chromophore becomes essentially nonfluorescent in solution environment due to its intrinsic twisting capability upon photoexcitation. To study "microscopic" torsional events and their effects on "macroscopic" fluorescence, we have developed an integrated ultrafast characterization platform involving femtosecond transient absorption (fs-TA) and wavelength-tunable femtosecond stimulated Raman spectroscopy (FSRS). A wide range of naturally occurring, circularly permuted, non-canonical amino-acid-decorated FPs and FP-based optical highlighters with photochromicity, photoconversion, and/or photoswitching capabilities have been recently investigated in great detail. Twisting conformational motions were elucidated to exist in all of these systems but to various extents. The associated different ultrafast pathways can be monitored via frequency changes of characteristic Raman bands during primary events and functional processes. The mapped electronic and structural dynamics information is crucial and has shown great potential and initial success for the rational design of proteins and other photoreceptors with novel functions and fluorescence properties.
Collapse
Affiliation(s)
- Longteng Tang
- Department of Chemistry, Oregon State University, 153 Gilbert Hall, Corvallis, Oregon 97331-4003, United States
| | - Chong Fang
- Department of Chemistry, Oregon State University, 153 Gilbert Hall, Corvallis, Oregon 97331-4003, United States
| |
Collapse
|
9
|
Boulanger SA, Chen C, Myasnyanko IN, Sokolov AI, Baranov MS, Fang C. Excited-State Dynamics of a meta-Dimethylamino Locked GFP Chromophore as a Fluorescence Turn-on Water Sensor †. Photochem Photobiol 2021; 98:311-324. [PMID: 34714942 DOI: 10.1111/php.13552] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 10/19/2021] [Accepted: 10/26/2021] [Indexed: 12/14/2022]
Abstract
Strategic incorporation of a meta-dimethylamino (-NMe2 ) group on the conformationally locked green fluorescent protein (GFP) model chromophore (m-NMe2 -LpHBDI) has drastically altered molecular electronic properties, counterintuitively enhancing fluorescence of only the neutral and cationic chromophores in aqueous solution. A ˜200-fold decrease in fluorescence quantum yield of m-NMe2 -LpHBDI in alcohols (e.g., MeOH, EtOH and 2-PrOH) supports this GFP-derived compound as a fluorescence turn-on water sensor, with large fluorescence intensity differences between H2 O and ROH emissions in various H2 O/ROH binary mixtures. A combination of steady-state electronic spectroscopy, femtosecond transient absorption, ground-state femtosecond stimulated Raman spectroscopy (FSRS) and quantum calculations elucidates an intermolecular hydrogen-bonding chain between a solvent -OH group and the chromophore phenolic ring -NMe2 and -OH functional groups, wherein fluorescence differences arise from an extended hydrogen-bonding network beyond the first solvation shell, as opposed to fluorescence quenching via a dark twisted intramolecular charge-transfer state. The absence of a meta-NMe2 group twisting coordinate upon electronic excitation was corroborated by experiments on control samples without the meta-NMe2 group or with both meta-NMe2 and para-OH groups locked in a six-membered ring. These deep mechanistic insights stemming from GFP chromophore scaffold will enable rational design of organic, compact and environmentally friendly water sensors.
Collapse
Affiliation(s)
| | - Cheng Chen
- Department of Chemistry, Oregon State University, Corvallis, OR
| | - Ivan N Myasnyanko
- Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia.,Pirogov Russian National Research Medical University, Moscow, Russia
| | - Anatolii I Sokolov
- Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia.,Pirogov Russian National Research Medical University, Moscow, Russia
| | - Mikhail S Baranov
- Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia.,Pirogov Russian National Research Medical University, Moscow, Russia
| | - Chong Fang
- Department of Chemistry, Oregon State University, Corvallis, OR
| |
Collapse
|
10
|
Zhang Z, Chen D, Lu X, Zhao R, Chen Z, Li M, Xu T, Mao Y, Yang Y, Yang Z. Directed Expression of Tracheal Antimicrobial Peptide as a Treatment for Bovine-Associated Staphylococcus Aureus-Induced Mastitis in Mice. Front Vet Sci 2021; 8:700930. [PMID: 34671659 PMCID: PMC8520960 DOI: 10.3389/fvets.2021.700930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Accepted: 08/24/2021] [Indexed: 11/13/2022] Open
Abstract
Bovine mastitis is perplexing the dairy industry since the initiation of intensive dairy farming, which has caused a reduction in the productivity of cows and an escalation in costs. The use of antibiotics causes a series of problems, especially the formation of bacterial antimicrobial resistance. However, there are limited antibiotic-free therapeutic strategies that can effectively relieve bacterial infection of bovine mammary glands. Hence, in this study, we constructed a mammary gland tissue-specific expression vector carrying the antimicrobial peptide of bovine-derived tracheal antimicrobial peptide (TAP) and evaluated it in both primary bovine mammary epithelial cells (pBMECs) and mice. The results showed that the vector driven by the β-lactoglobulin gene (BLG) promoter could efficiently direct the expression of TAP in pBMECs and the mammary gland tissue of mice. In addition, significant antibacterial effects were observed in both in vitro and in vivo experiments when introducing this vector to bovine-associated Staphylococcus aureus-treated pBMECs and mice, respectively. This study demonstrated that the mammary gland tissue-specific expression vector could be used to introduce antimicrobial peptide both in in vitro and in vivo and will provide a new therapeutic strategy in the treatment of bovine mastitis.
Collapse
Affiliation(s)
- Zhipeng Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Daijie Chen
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Xubin Lu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Ruifeng Zhao
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Zhi Chen
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China.,Joint International Research Laboratory of Agriculture & Agri-Product Safety, Ministry of Education, Yangzhou University, Yangzhou, China
| | - Mingxun Li
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Tianle Xu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China.,Joint International Research Laboratory of Agriculture & Agri-Product Safety, Ministry of Education, Yangzhou University, Yangzhou, China
| | - Yongjiang Mao
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Yi Yang
- Joint International Research Laboratory of Agriculture & Agri-Product Safety, Ministry of Education, Yangzhou University, Yangzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Zhangping Yang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China.,Joint International Research Laboratory of Agriculture & Agri-Product Safety, Ministry of Education, Yangzhou University, Yangzhou, China
| |
Collapse
|
11
|
Ryazantsev DY, Myshkin MY, Alferova VA, Tsvetkov VB, Shustova EY, Kamzeeva PN, Kovalets PV, Zaitseva ER, Baleeva NS, Zatsepin TS, Shenkarev ZO, Baranov MS, Kozlovskaya LI, Aralov AV. Probing GFP Chromophore Analogs as Anti-HIV Agents Targeting LTR-III G-Quadruplex. Biomolecules 2021; 11:biom11101409. [PMID: 34680042 PMCID: PMC8533149 DOI: 10.3390/biom11101409] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 09/23/2021] [Accepted: 09/23/2021] [Indexed: 12/28/2022] Open
Abstract
Green fluorescent protein (GFP) chromophore and its congeners draw significant attention mostly for bioimaging purposes. In this work we probed these compounds as antiviral agents. We have chosen LTR-III DNA G4, the major G-quadruplex (G4) present in the long terminal repeat (LTR) promoter region of the human immunodeficiency virus-1 (HIV-1), as the target for primary screening and designing antiviral drug candidates. The stabilization of this G4 was previously shown to suppress viral gene expression and replication. FRET-based high-throughput screening (HTS) of 449 GFP chromophore-like compounds revealed a number of hits, sharing some general structural features. Structure-activity relationships (SAR) for the most effective stabilizers allowed us to establish structural fragments, important for G4 binding. Synthetic compounds, developed on the basis of SAR analysis, exhibited high LTR-III G4 stabilization level. NMR spectroscopy and molecular modeling revealed the possible formation of LTR-III G4-ligand complex with one of the lead selective derivative ZS260.1 positioned within the cavity, thus supporting the LTR-III G4 attractiveness for drug targeting. Selected compounds showed moderate activity against HIV-I (EC50 1.78–7.7 μM) in vitro, but the activity was accompanied by pronounced cytotoxicity.
Collapse
Affiliation(s)
- Dmitriy Y. Ryazantsev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia; (D.Y.R.); (M.Y.M.); (V.A.A.); (P.N.K.); (P.V.K.); (E.R.Z.); (N.S.B.); (Z.O.S.); (M.S.B.)
| | - Mikhail Yu. Myshkin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia; (D.Y.R.); (M.Y.M.); (V.A.A.); (P.N.K.); (P.V.K.); (E.R.Z.); (N.S.B.); (Z.O.S.); (M.S.B.)
| | - Vera A. Alferova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia; (D.Y.R.); (M.Y.M.); (V.A.A.); (P.N.K.); (P.V.K.); (E.R.Z.); (N.S.B.); (Z.O.S.); (M.S.B.)
- Gause Institute of New Antibiotics, B. Pirogovskaya 11, 119021 Moscow, Russia
| | - Vladimir B. Tsvetkov
- World-Class Research Center “Digital Biodesign and Personalized Healthcare”, Sechenov First Moscow State Medical University, 8/2 Trubetskaya Str., 119146 Moscow, Russia;
- Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 119435 Moscow, Russia
| | - Elena Y. Shustova
- Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences, 108819 Moscow, Russia;
| | - Polina N. Kamzeeva
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia; (D.Y.R.); (M.Y.M.); (V.A.A.); (P.N.K.); (P.V.K.); (E.R.Z.); (N.S.B.); (Z.O.S.); (M.S.B.)
- D. Mendeleev University of Chemical Technology of Russia, 9 Miusskaya Sq., 125047 Moscow, Russia
| | - Polina V. Kovalets
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia; (D.Y.R.); (M.Y.M.); (V.A.A.); (P.N.K.); (P.V.K.); (E.R.Z.); (N.S.B.); (Z.O.S.); (M.S.B.)
| | - Elvira R. Zaitseva
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia; (D.Y.R.); (M.Y.M.); (V.A.A.); (P.N.K.); (P.V.K.); (E.R.Z.); (N.S.B.); (Z.O.S.); (M.S.B.)
- D. Mendeleev University of Chemical Technology of Russia, 9 Miusskaya Sq., 125047 Moscow, Russia
| | - Nadezhda S. Baleeva
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia; (D.Y.R.); (M.Y.M.); (V.A.A.); (P.N.K.); (P.V.K.); (E.R.Z.); (N.S.B.); (Z.O.S.); (M.S.B.)
- Pirogov Russian National Research Medical University, Ostrovitianov 1, 117997 Moscow, Russia
| | - Timofei S. Zatsepin
- Center for Life Sciences, Skolkovo Institute of Science and Technology, 121205 Moscow, Russia;
| | - Zakhar O. Shenkarev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia; (D.Y.R.); (M.Y.M.); (V.A.A.); (P.N.K.); (P.V.K.); (E.R.Z.); (N.S.B.); (Z.O.S.); (M.S.B.)
| | - Mikhail S. Baranov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia; (D.Y.R.); (M.Y.M.); (V.A.A.); (P.N.K.); (P.V.K.); (E.R.Z.); (N.S.B.); (Z.O.S.); (M.S.B.)
- Pirogov Russian National Research Medical University, Ostrovitianov 1, 117997 Moscow, Russia
| | - Liubov I. Kozlovskaya
- Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences, 108819 Moscow, Russia;
- Sechenov First Moscow State Medical University, 119991 Moscow, Russia
- Correspondence: (L.I.K.); (A.V.A.)
| | - Andrey V. Aralov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia; (D.Y.R.); (M.Y.M.); (V.A.A.); (P.N.K.); (P.V.K.); (E.R.Z.); (N.S.B.); (Z.O.S.); (M.S.B.)
- G4_Interact, USERN, University of Pavia, 27100 Pavia, Italy
- Correspondence: (L.I.K.); (A.V.A.)
| |
Collapse
|
12
|
A Novel Dialkylamino GFP Chromophore as an Environment-Polarity Sensor Reveals the Role of Twisted Intramolecular Charge Transfer. CHEMOSENSORS 2021. [DOI: 10.3390/chemosensors9080234] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
We discovered a novel fluorophore by incorporating a dimethylamino group (–NMe2) into the conformationally locked green fluorescent protein (GFP) scaffold. It exhibited a marked solvent-polarity-dependent fluorogenic behavior and can potentially find broad applications as an environment-polarity sensor in vitro and in vivo. The ultrafast femtosecond transient absorption (fs-TA) spectroscopy in combination with quantum calculations revealed the presence of a twisted intramolecular charge transfer (TICT) state, which is formed by rotation of the –NMe2 group in the electronic excited state. In contrast to the bright fluorescent state (FS), the TICT state is dark and effectively quenches fluorescence upon formation. We employed a newly developed multivariable analysis approach to the FS lifetime in various solvents and showed that the FS → TICT reaction barrier is mainly modulated by H-bonding capability instead of viscosity of the solvent, accounting for the observed polarity dependence. These deep mechanistic insights are further corroborated by the dramatic loss of fluorogenicity for two similar GFP-derived chromophores in which the rotation of the –NMe2 group is inhibited by structural locking.
Collapse
|