1
|
Yoshimura A, Zhdankin VV. Recent Progress in Synthetic Applications of Hypervalent Iodine(III) Reagents. Chem Rev 2024; 124:11108-11186. [PMID: 39269928 PMCID: PMC11468727 DOI: 10.1021/acs.chemrev.4c00303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 08/18/2024] [Accepted: 08/29/2024] [Indexed: 09/15/2024]
Abstract
Hypervalent iodine(III) compounds have found wide application in modern organic chemistry as environmentally friendly reagents and catalysts. Hypervalent iodine reagents are commonly used in synthetically important halogenations, oxidations, aminations, heterocyclizations, and various oxidative functionalizations of organic substrates. Iodonium salts are important arylating reagents, while iodonium ylides and imides are excellent carbene and nitrene precursors. Various derivatives of benziodoxoles, such as azidobenziodoxoles, trifluoromethylbenziodoxoles, alkynylbenziodoxoles, and alkenylbenziodoxoles have found wide application as group transfer reagents in the presence of transition metal catalysts, under metal-free conditions, or using photocatalysts under photoirradiation conditions. Development of hypervalent iodine catalytic systems and discovery of highly enantioselective reactions using chiral hypervalent iodine compounds represent a particularly important recent achievement in the field of hypervalent iodine chemistry. Chemical transformations promoted by hypervalent iodine in many cases are unique and cannot be performed by using any other common, non-iodine-based reagent. This review covers literature published mainly in the last 7-8 years, between 2016 and 2024.
Collapse
Affiliation(s)
- Akira Yoshimura
- Faculty
of Pharmaceutical Sciences, Aomori University, 2-3-1 Kobata, Aomori 030-0943, Japan
| | - Viktor V. Zhdankin
- Department
of Chemistry and Biochemistry, University
of Minnesota Duluth, Duluth, Minnesota 55812, United States
| |
Collapse
|
2
|
Zheng DS, Zhao F, Gu Q, You SL. Rh(III)-catalyzed atroposelective C-H alkynylation of 1-aryl isoquinolines with hypervalent iodine-alkyne reagents. Chem Commun (Camb) 2024; 60:6753-6756. [PMID: 38863330 DOI: 10.1039/d4cc01785d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2024]
Abstract
An efficient Rh(III)-catalyzed enantioselective C-H alkynylation of isoquinolines is disclosed. The C-H alkynylation of 1-aryl isoquinolines with hypervalent iodine-alkyne reagents proceeded in DMA at room temperature in the presence of 2.5 mol% chiral SCpRh(III) complex along with 20 mol% AgSbF6, providing axially chiral alkynylated 1-aryl isoquinolines in excellent yields (up to 93%) and enantioselectivity (up to 95% ee). The diverse transformations of the product further enhance the potential utility of this reaction.
Collapse
Affiliation(s)
- Dong-Song Zheng
- Chang-Kung Chuang Institute, East China Normal University, 3663 N. Zhongshan Road, Shanghai 200062, China
- New Cornerstone Science Laboratory, State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China.
| | - Fangnuo Zhao
- New Cornerstone Science Laboratory, State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China.
| | - Qing Gu
- New Cornerstone Science Laboratory, State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China.
| | - Shu-Li You
- Chang-Kung Chuang Institute, East China Normal University, 3663 N. Zhongshan Road, Shanghai 200062, China
- New Cornerstone Science Laboratory, State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China.
| |
Collapse
|
3
|
Doobary S, Di Tommaso EM, Postole A, Inge AK, Olofsson B. Structure-reactivity analysis of novel hypervalent iodine reagents in S-vinylation of thiols. Front Chem 2024; 12:1376948. [PMID: 38487782 PMCID: PMC10937425 DOI: 10.3389/fchem.2024.1376948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 02/19/2024] [Indexed: 03/17/2024] Open
Abstract
The transition-metal free S-vinylation of thiophenols by vinylbenziodoxolones (VBX) constituted an important step forward in hypervalent iodine-mediated vinylations, highlighting the difference to vinyliodonium salts and that the reaction outcome was influenced by the substitution pattern of the benziodoxolone core. In this study, we report several new classes of hypervalent iodine vinylation reagents; vinylbenziodazolones, vinylbenziodoxolonimine and vinyliodoxathiole dioxides. Their synthesis, structural and electronic properties are described and correlated to the S-vinylation outcome, shedding light on some interesting facets of these reagents.
Collapse
Affiliation(s)
- Sayad Doobary
- Department of Organic Chemistry, Stockholm University, Stockholm, Sweden
| | | | - Alexandru Postole
- Department of Organic Chemistry, Stockholm University, Stockholm, Sweden
| | - A. Ken Inge
- Department of Materials and Environmental Chemistry, Stockholm University, Stockholm, Sweden
| | - Berit Olofsson
- Department of Organic Chemistry, Stockholm University, Stockholm, Sweden
| |
Collapse
|
4
|
Lohithakshamenon R, Prasanthkumar KP, Femina C, Sajith PK. Bond Strength and Interaction Energies in Togni Reagents: Insights from Molecular Electrostatic Potential-Based Parameters. J Phys Chem A 2024; 128:727-737. [PMID: 38253016 DOI: 10.1021/acs.jpca.3c06378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Togni reagents and their analogs, classified as hypervalent iodine(III) complexes, serve as potent trifluoromethylation agents. The interplay of cis and trans factors plays a pivotal role in shaping their performance, affecting aspects such as bond strength, interaction energies, stability, and subsequent nucleophilic reactions. In this context, we propose the utilization of the molecular electrostatic potential (MESP) at the carbon atom (VC) of the I-CF3 moiety as a sensitive parameter to quantify the cis and trans influences in Togni-type reagents. Our study has shown that VC serves as a convenient probe for determining the heterolytic bond dissociation energy (BDE) and, consequently, assessing the reactivity of these reagents. Moreover, these parameters have been successfully applied to evaluate the strength of the σ-hole interactions with nucleophiles (Cl- and NMe3). Additionally, we provide insights into interactions of Togni reagents with Brønsted acids such as HCl and HSO3F, elucidating them in terms of MESP topological parameters. These findings yield valuable information about the electronic properties of hypervalent iodine reagents, particularly Togni-type reagents, offering the potential for optimizing structurally modified reagents with enhanced activity and stability.
Collapse
Affiliation(s)
| | - Kavanal P Prasanthkumar
- Post Graduate and Research Department of Chemistry, Maharaja's College, Ernakulam 682011, India
| | | | | |
Collapse
|
5
|
Le Du E, Ramirez NP, Nicolai S, Scopelliti R, Fadaei‐Tirani F, Wodrich MD, Hari DP, Waser J. X‐Ray and NMR Structural Data of Ethynylbenziodoxolones (EBXs) Reagents and Their Analogues. Helv Chim Acta 2023. [DOI: 10.1002/hlca.202200175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Affiliation(s)
- Eliott Le Du
- Laboratory of Catalysis and Organic Synthesis Institut des Sciences et Ingénierie Chimique Ecole Polytechnique Fédérale de Lausanne EPFL SB ISIC LCSO BCH 4306, CH-1015 Lausanne Switzerland
| | - Nieves P. Ramirez
- Laboratory of Catalysis and Organic Synthesis Institut des Sciences et Ingénierie Chimique Ecole Polytechnique Fédérale de Lausanne EPFL SB ISIC LCSO BCH 4306, CH-1015 Lausanne Switzerland
| | - Stefano Nicolai
- Laboratory of Catalysis and Organic Synthesis Institut des Sciences et Ingénierie Chimique Ecole Polytechnique Fédérale de Lausanne EPFL SB ISIC LCSO BCH 4306, CH-1015 Lausanne Switzerland
| | - Rosario Scopelliti
- Institut des Sciences et Ingénierie Chimique Ecole Polytechnique Fédérale de Lausanne EPFL SB ISIC GE BCH 2111, CH-1015 Lausanne Switzerland
| | - Farzaneh Fadaei‐Tirani
- Institut des Sciences et Ingénierie Chimique Ecole Polytechnique Fédérale de Lausanne EPFL SB ISIC GE BCH 2111, CH-1015 Lausanne Switzerland
| | - Matthew D. Wodrich
- Laboratory of Catalysis and Organic Synthesis Institut des Sciences et Ingénierie Chimique Ecole Polytechnique Fédérale de Lausanne EPFL SB ISIC LCSO BCH 4306, CH-1015 Lausanne Switzerland
| | - Durga Prasad Hari
- Laboratory of Catalysis and Organic Synthesis Institut des Sciences et Ingénierie Chimique Ecole Polytechnique Fédérale de Lausanne EPFL SB ISIC LCSO BCH 4306, CH-1015 Lausanne Switzerland
| | - Jerome Waser
- Laboratory of Catalysis and Organic Synthesis Institut des Sciences et Ingénierie Chimique Ecole Polytechnique Fédérale de Lausanne EPFL SB ISIC LCSO BCH 4306, CH-1015 Lausanne Switzerland
| |
Collapse
|
6
|
Peng X, Rahim A, Peng W, Jiang F, Gu Z, Wen S. Recent Progress in Cyclic Aryliodonium Chemistry: Syntheses and Applications. Chem Rev 2023; 123:1364-1416. [PMID: 36649301 PMCID: PMC9951228 DOI: 10.1021/acs.chemrev.2c00591] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Indexed: 01/18/2023]
Abstract
Hypervalent aryliodoumiums are intensively investigated as arylating agents. They are excellent surrogates to aryl halides, and moreover they exhibit better reactivity, which allows the corresponding arylation reactions to be performed under mild conditions. In the past decades, acyclic aryliodoniums are widely explored as arylation agents. However, the unmet need for acyclic aryliodoniums is the improvement of their notoriously low reaction economy because the coproduced aryl iodides during the arylation are often wasted. Cyclic aryliodoniums have their intrinsic advantage in terms of reaction economy, and they have started to receive considerable attention due to their valuable synthetic applications to initiate cascade reactions, which can enable the construction of complex structures, including polycycles with potential pharmaceutical and functional properties. Here, we are summarizing the recent advances made in the research field of cyclic aryliodoniums, including the nascent design of aryliodonium species and their synthetic applications. First, the general preparation of typical diphenyl iodoniums is described, followed by the construction of heterocyclic iodoniums and monoaryl iodoniums. Then, the initiated arylations coupled with subsequent domino reactions are summarized to construct polycycles. Meanwhile, the advances in cyclic aryliodoniums for building biaryls including axial atropisomers are discussed in a systematic manner. Finally, a very recent advance of cyclic aryliodoniums employed as halogen-bonding organocatalysts is described.
Collapse
Affiliation(s)
- Xiaopeng Peng
- College
of Pharmacy, Key Laboratory of Prevention and Treatment of Cardiovascular
and Cerebrovascular Diseases, Ministry of Education, Jiangxi Province
Key Laboratory of Biomaterials and Biofabrication for Tissue Engineering, Gannan Medical University, Ganzhou341000, P.R. China
- State
Key Laboratory of Oncology in South China, Collaborative Innovation
Center for Cancer Medicine, Sun Yat-sen
University Cancer Center, 651 Dongfeng East Road, Guangzhou510060, P. R. China
| | - Abdur Rahim
- Department
of Chemistry, University of Science and
Technology of China, 96 Jinzhai Road, Hefei230026, P. R. China
| | - Weijie Peng
- College
of Pharmacy, Key Laboratory of Prevention and Treatment of Cardiovascular
and Cerebrovascular Diseases, Ministry of Education, Jiangxi Province
Key Laboratory of Biomaterials and Biofabrication for Tissue Engineering, Gannan Medical University, Ganzhou341000, P.R. China
| | - Feng Jiang
- College
of Pharmacy, Key Laboratory of Prevention and Treatment of Cardiovascular
and Cerebrovascular Diseases, Ministry of Education, Jiangxi Province
Key Laboratory of Biomaterials and Biofabrication for Tissue Engineering, Gannan Medical University, Ganzhou341000, P.R. China
| | - Zhenhua Gu
- Department
of Chemistry, University of Science and
Technology of China, 96 Jinzhai Road, Hefei230026, P. R. China
| | - Shijun Wen
- State
Key Laboratory of Oncology in South China, Collaborative Innovation
Center for Cancer Medicine, Sun Yat-sen
University Cancer Center, 651 Dongfeng East Road, Guangzhou510060, P. R. China
| |
Collapse
|
7
|
Kuczmera TJ, Boelke A, Nachtsheim BJ. Stabilization of Ethynyl‐Substituted Aryl‐λ3‐Iodanes by Tethered N‐Heterocylces. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Thomas J Kuczmera
- University of Bremen: Universitat Bremen Institut für Organische und Analytische Chemie GERMANY
| | - Andreas Boelke
- University of Bremen: Universitat Bremen Institut für Organische und Analytische Chemie GERMANY
| | - Boris J Nachtsheim
- University of Bremen: Universitat Bremen Institut für Organische und Analytische Chemie Leobener Straße 7 28359 Bremen GERMANY
| |
Collapse
|
8
|
Le Du E, Duhail T, Wodrich MD, Scopelliti R, Fadaei‐Tirani F, Anselmi E, Magnier E, Waser J. Structure and Reactivity of N-Heterocyclic Alkynyl Hypervalent Iodine Reagents. Chemistry 2021; 27:10979-10986. [PMID: 33978974 PMCID: PMC8361724 DOI: 10.1002/chem.202101475] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Indexed: 12/23/2022]
Abstract
Ethynylbenziodoxol(on)e (EBX) cyclic hypervalent iodine reagents have become popular reagents for the alkynylation of radicals and nucleophiles, but only offer limited possibilities for further structure and reactivity fine-tuning. Herein, the synthesis of new N-heterocyclic hypervalent iodine reagents with increased structural flexibility based on amide, amidine and sulfoximine scaffolds is reported. Solid-state structures of the reagents are reported and the analysis of the I-Calkyne bond lengths allowed assessing the trans-effect of the different substituents. Molecular electrostatic potential (MEP) maps of the reagents, derived from DFT computations, revealed less pronounced σ-hole regions for sulfonamide-based compounds. Most reagents reacted well in the alkynylation of β-ketoesters. The alkynylation of thiols afforded more variable yields, with compounds with a stronger σ-hole reacting better. In metal-mediated transformations, the N-heterocyclic hypervalent iodine reagents gave inferior results when compared to the O-based EBX reagents.
Collapse
Affiliation(s)
- Eliott Le Du
- Laboratory of Catalysis and Organic SynthesisEcole Polytechnique Fédérale de LausanneEPFL SB ISIC LCSO, BCH 43061015LausanneSwitzerland
| | - Thibaut Duhail
- Institut Lavoisier de VersaillesUniversité Paris-Saclay, UVSQ, CNRS, UMR 81807800VersaillesFrance
| | - Matthew D. Wodrich
- Laboratory of Catalysis and Organic SynthesisEcole Polytechnique Fédérale de LausanneEPFL SB ISIC LCSO, BCH 43061015LausanneSwitzerland
| | - Rosario Scopelliti
- Institute of Chemical Sciences and EngineeringEcole Polytechnique Fédérale de LausanneEPFL SB ISIC GE, BCH 2111, 1015 LausanneEPFL SB ISIC LCSO, BCH 43061015LausanneSwitzerland
| | - Farzaneh Fadaei‐Tirani
- Institute of Chemical Sciences and EngineeringEcole Polytechnique Fédérale de LausanneEPFL SB ISIC GE, BCH 2111, 1015 LausanneEPFL SB ISIC LCSO, BCH 43061015LausanneSwitzerland
| | - Elsa Anselmi
- Institut Lavoisier de VersaillesUniversité Paris-Saclay, UVSQ, CNRS, UMR 81807800VersaillesFrance
- Université de ToursFaculté des Sciences et Techniques37200ToursFrance
| | - Emmanuel Magnier
- Institut Lavoisier de VersaillesUniversité Paris-Saclay, UVSQ, CNRS, UMR 81807800VersaillesFrance
| | - Jerome Waser
- Laboratory of Catalysis and Organic SynthesisEcole Polytechnique Fédérale de LausanneEPFL SB ISIC LCSO, BCH 43061015LausanneSwitzerland
| |
Collapse
|
9
|
Lim B, Cheng Y, Kato T, Pham A, Le Du E, Mishra AK, Grinhagena E, Moreau D, Sakai N, Waser J, Matile S. Inhibition of Thiol‐Mediated Uptake with Irreversible Covalent Inhibitors. Helv Chim Acta 2021. [DOI: 10.1002/hlca.202100085] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Bumhee Lim
- Department of Organic Chemistry University of Geneva Quai Ernest Ansermet 30 CH-1211 Geneva 4 Switzerland
- National Centre of Competence in Research (NCCR) Chemical Biology Quai Ernest Ansermet 30 CH-1211 Geneva 4 Switzerland
| | - Yangyang Cheng
- Department of Organic Chemistry University of Geneva Quai Ernest Ansermet 30 CH-1211 Geneva 4 Switzerland
- National Centre of Competence in Research (NCCR) Chemical Biology Quai Ernest Ansermet 30 CH-1211 Geneva 4 Switzerland
| | - Takehiro Kato
- Department of Organic Chemistry University of Geneva Quai Ernest Ansermet 30 CH-1211 Geneva 4 Switzerland
- National Centre of Competence in Research (NCCR) Chemical Biology Quai Ernest Ansermet 30 CH-1211 Geneva 4 Switzerland
| | - Anh‐Tuan Pham
- Department of Organic Chemistry University of Geneva Quai Ernest Ansermet 30 CH-1211 Geneva 4 Switzerland
- National Centre of Competence in Research (NCCR) Chemical Biology Quai Ernest Ansermet 30 CH-1211 Geneva 4 Switzerland
| | - Eliott Le Du
- Laboratory of Catalysis and Organic Synthesis Ecole Polytechnique Fédérale de Lausanne EPFL SB ISIC LCSO BCH 4306 1015 Lausanne Switzerland
| | - Abhaya Kumar Mishra
- National Centre of Competence in Research (NCCR) Chemical Biology Quai Ernest Ansermet 30 CH-1211 Geneva 4 Switzerland
- Laboratory of Catalysis and Organic Synthesis Ecole Polytechnique Fédérale de Lausanne EPFL SB ISIC LCSO BCH 4306 1015 Lausanne Switzerland
| | - Elija Grinhagena
- National Centre of Competence in Research (NCCR) Chemical Biology Quai Ernest Ansermet 30 CH-1211 Geneva 4 Switzerland
- Laboratory of Catalysis and Organic Synthesis Ecole Polytechnique Fédérale de Lausanne EPFL SB ISIC LCSO BCH 4306 1015 Lausanne Switzerland
| | - Dimitri Moreau
- National Centre of Competence in Research (NCCR) Chemical Biology Quai Ernest Ansermet 30 CH-1211 Geneva 4 Switzerland
| | - Naomi Sakai
- Department of Organic Chemistry University of Geneva Quai Ernest Ansermet 30 CH-1211 Geneva 4 Switzerland
- National Centre of Competence in Research (NCCR) Chemical Biology Quai Ernest Ansermet 30 CH-1211 Geneva 4 Switzerland
| | - Jerome Waser
- National Centre of Competence in Research (NCCR) Chemical Biology Quai Ernest Ansermet 30 CH-1211 Geneva 4 Switzerland
- Laboratory of Catalysis and Organic Synthesis Ecole Polytechnique Fédérale de Lausanne EPFL SB ISIC LCSO BCH 4306 1015 Lausanne Switzerland
| | - Stefan Matile
- Department of Organic Chemistry University of Geneva Quai Ernest Ansermet 30 CH-1211 Geneva 4 Switzerland
- National Centre of Competence in Research (NCCR) Chemical Biology Quai Ernest Ansermet 30 CH-1211 Geneva 4 Switzerland
| |
Collapse
|