1
|
Riesinger C, Blank PM, Scholtes C, Gschwind RM, Scheer M. Enhancing the Reactivity of an Aromatic cyclo-P 5 Ligand via Electrophilic Activation. Chemistry 2024:e202402675. [PMID: 39344789 DOI: 10.1002/chem.202402675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 09/23/2024] [Accepted: 09/30/2024] [Indexed: 10/01/2024]
Abstract
Electrophilic activation of the aromatic cyclo-P5 ligand in [Cp*Fe(η5-P5)] is demonstrated to drastically enhance its reactivity towards weak nucleophiles. Unprecedented functionalized, contracted as well as complexly aggregated polyphosphorus compounds are accessed utilizing [Cp*Fe(η5-P5Me)][OTf] (A), highlighting the great potential of this underexplored mode of reactivity. Addition of carbenes to A affords novel 1,2- or 1,1-difunctionalized cyclo-P5 complexes [Cp*Fe(η4-P5(1-L)(2-Me)][OTf] (L=IDipp (1), EtCAAC (2), IiPr (3 b)) and [Cp*Fe(η4-P5(1-IiPr)(1-Me)][OTf] (3 a). For the first time, the much smaller IMe4 leads to the contraction of the cyclo-P5 ligand and formation of [Cp*Fe(η4-P4(1-IMe)(4-Me)] (4). DFT calculations shed light on the delicate mechanism of this type of reaction, which is reinforced by the experimental identification of key intermediates. Even the comparably weak nucleophile IDippCH2 reacts with A to form [Cp*Fe(η4-P5(1-IDippCH2)(1/2-Me)][OTf] (6 a/b), highlighting its explicitly more reactive nature. Moreover, exposure of A to IDippEH (E=N, P) leads to a unique aggregation reaction affording [{Cp*Fe}2{μ2,η4:3:1-P10Me2(IDippN)}][OTf] (8) and [{Cp*Fe}2{μ2,η4:1:1:1-P11Me2(IDipp)}][OTf] (9), respectively.
Collapse
Affiliation(s)
- Christoph Riesinger
- Institute of Inorganic Chemistry, University of Regensburg, Regensburg, 93040, Germany
| | - Philip M Blank
- Laboratory of Organic Chemistry, ETH Zürich, Vladimir-Prelog-Weg 3, HCI, Zürich, 8093, Switzerland
| | - Christian Scholtes
- Institute of Organic Chemistry, University of Regensburg, Regensburg, 93040, Germany
| | - Ruth M Gschwind
- Institute of Organic Chemistry, University of Regensburg, Regensburg, 93040, Germany
| | - Manfred Scheer
- Institute of Inorganic Chemistry, University of Regensburg, Regensburg, 93040, Germany
| |
Collapse
|
2
|
Sun X, Hinz A, Schulz S, Zimmermann L, Scheer M, Roesky PW. Snapshots of sequential polyphosphide rearrangement upon metallatetrylene addition. Chem Sci 2023; 14:4769-4776. [PMID: 37181779 PMCID: PMC10171192 DOI: 10.1039/d3sc00806a] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 03/30/2023] [Indexed: 05/16/2023] Open
Abstract
Insertion and functionalization of gallasilylenes [LPhSi-Ga(Cl)LBDI] (LPh = PhC(NtBu)2; LBDI = [{2,6-iPr2C6H3NCMe}2CH]) into the cyclo-E5 rings of [Cp*Fe(η5-E5)] (Cp* = η5-C5Me5; E = P, As) are reported. Reactions of [Cp*Fe(η5-E5)] with gallasilylene result in E-E/Si-Ga bond cleavage and the insertion of the silylene in the cyclo-E5 rings. [(LPhSi-Ga(Cl)LBDI){(η4-P5)FeCp*}], in which the Si atom binds to the bent cyclo-P5 ring, was identified as a reaction intermediate. The ring-expansion products are stable at room temperature, while isomerization occurred at higher temperature, and the silylene moiety further migrates to the Fe atom, forming the corresponding ring-construction isomers. Furthermore, reaction of [Cp*Fe(η5-As5)] with the heavier gallagermylene [LPhGe-Ga(Cl)LBDI] was also investigated. All the isolated complexes represent rare examples of mixed group 13/14 iron polypnictogenides, which could only be synthesized by taking advantage of the cooperativity of the gallatetrylenes featuring low-valent Si(ii) or Ge(ii) and Lewis acidic Ga(iii) units/entities.
Collapse
Affiliation(s)
- Xiaofei Sun
- Institute of Inorganic Chemistry, Karlsruhe Institute of Technology (KIT) Engesserstraße 15 Karlsruhe 76131 Germany
| | - Alexander Hinz
- Institute of Inorganic Chemistry, Karlsruhe Institute of Technology (KIT) Engesserstraße 15 Karlsruhe 76131 Germany
| | - Stephan Schulz
- Institute for Inorganic Chemistry and Center for Nanointegration Duisburg-Essen (Cenide), University of Duisburg-Essen Universitätsstraße 5-7 Essen 45117 Germany
| | - Lisa Zimmermann
- Institute of Inorganic Chemistry, University of Regensburg Universitätsstr. 31 Regensburg 93040 Germany
| | - Manfred Scheer
- Institute of Inorganic Chemistry, University of Regensburg Universitätsstr. 31 Regensburg 93040 Germany
| | - Peter W Roesky
- Institute of Inorganic Chemistry, Karlsruhe Institute of Technology (KIT) Engesserstraße 15 Karlsruhe 76131 Germany
| |
Collapse
|
3
|
Yang C, Jiang X, Chen Q, Leng X, Xiao J, Ye S, Deng L. Signet-Ring-Shaped Octaphosphorus–Cobalt Complexes: Synthesis, Structure, and Functionalization Reactions with Carbene Analogs. J Am Chem Soc 2022; 144:20785-20796. [DOI: 10.1021/jacs.2c08647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Affiliation(s)
- Chengbo Yang
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Xuebin Jiang
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Dalian 116023, China
| | - Qi Chen
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Xuebing Leng
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Jie Xiao
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Shengfa Ye
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Dalian 116023, China
| | - Liang Deng
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, 1 Sub-lane Xiangshan, Hangzhou 310024, China
| |
Collapse
|
4
|
Ura R, Tsurusaki A, Kamikawa K. Palladium(II) complexes of bis(diphosphene) with different coordination behaviors. Dalton Trans 2022; 51:2943-2952. [PMID: 35107100 DOI: 10.1039/d1dt03806k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Organophosphorus compounds possessing a P-P double-bond character are intriguing materials in coordination chemistry because it is possible to form a variety of coordination modes from the π-bond in addition to the lone pairs. We report herein the complexation of a new bidentate ligand, ethylene-tethered bis(binaphthyldiphosphene) (S,S)-2, with palladium(II) species. The reaction of (S,S)-2 with [Pd(π-allyl)(cod)](SbF6) and PdCl2(cod) afforded η1/η1-bis(diphosphene) complex 7 and η1-diphosphene/η2-phosphanylphosphide complex 8, respectively. The latter was characterized by a chloride migration from the palladium atom to a phosphorus atom due to the high electron-accepting character of the PP moiety. Theoretical calculations revealed the migration process and nature of complex 8.
Collapse
Affiliation(s)
- Rikako Ura
- Department of Chemistry, Graduate School of Science, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan.
| | - Akihiro Tsurusaki
- Department of Chemistry, Graduate School of Science, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan.
| | - Ken Kamikawa
- Department of Chemistry, Graduate School of Science, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan.
| |
Collapse
|
5
|
Sun X, Singh AK, Yadav R, Jin D, Haimerl M, Scheer M, Roesky PW. Triple-decker complexes incorporating three distinct deck architectures. Chem Commun (Camb) 2021; 58:673-676. [PMID: 34919113 DOI: 10.1039/d1cc06182h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The reactivity of the dilithioplumbole ([Li2(thf)2(μ,η5-LPb)], LPb = 1,4-bis-tert-butyl-dimethylsilyl-2,3-bis-phenyl-plumbolyl) towards the reactive pnictogen precursors P4, pentaphosphaferrocene, and pentaarsaferrocene ([Cp*Fe(η5-E5)] (Cp* = η5-C5Me5, E = P, As)) is reported. The reaction with P4 afforded a phospholyl lithium complex, via lead-phosphorus exchange, while the reactions with [Cp*Fe(η5-E5)] yielded the first examples of Pb-Fe-Li heterotrimetallic triple-decker polypnictogenides with three different deck motifs.
Collapse
Affiliation(s)
- Xiaofei Sun
- Institute of Inorganic Chemistry, Karlsruhe Institute of Technology (KIT), Engesserstraße 15, Karlsruhe, 76131, Germany.
| | - Akhil Kumar Singh
- Institute of Inorganic Chemistry, Karlsruhe Institute of Technology (KIT), Engesserstraße 15, Karlsruhe, 76131, Germany.
| | - Ravi Yadav
- Institute of Inorganic Chemistry, Karlsruhe Institute of Technology (KIT), Engesserstraße 15, Karlsruhe, 76131, Germany.
| | - Da Jin
- Institute of Inorganic Chemistry, Karlsruhe Institute of Technology (KIT), Engesserstraße 15, Karlsruhe, 76131, Germany.
| | - Maria Haimerl
- Institute of Inorganic Chemistry, University of Regensburg, Regensburg 93040, Germany
| | - Manfred Scheer
- Institute of Inorganic Chemistry, University of Regensburg, Regensburg 93040, Germany
| | - Peter W Roesky
- Institute of Inorganic Chemistry, Karlsruhe Institute of Technology (KIT), Engesserstraße 15, Karlsruhe, 76131, Germany.
| |
Collapse
|