1
|
Nakahata DH, Kanavos I, Zubiria-Ulacia M, Inague A, Salassa L, Lobinski R, Miyamoto S, Matxain JM, Ronga L, de Paiva REF. Gold-Promoted Biocompatible Selenium Arylation of Small Molecules, Peptides and Proteins. Chemistry 2024; 30:e202304050. [PMID: 38197477 DOI: 10.1002/chem.202304050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/09/2024] [Accepted: 01/10/2024] [Indexed: 01/11/2024]
Abstract
A low pKa (5.2), high polarizable volume (3.8 Å), and proneness to oxidation under ambient conditions make selenocysteine (Sec, U) a unique, natural reactive handle present in most organisms across all domains of life. Sec modification still has untapped potential for site-selective protein modification and probing. Herein we demonstrate the use of a cyclometalated gold(III) compound, [Au(bnpy)Cl2 ], in the arylation of diselenides of biological significance, with a scope covering small molecule models, peptides, and proteins using a combination of multinuclear NMR (including 77 Se NMR), and LC-MS. Diphenyl diselenide (Ph-Se)2 and selenocystine, (Sec)2 , were used for reaction optimization. This approach allowed us to demonstrate that an excess of diselenide (Au/Se-Se) and an increasing water percentage in the reaction media enhance both the conversion and kinetics of the C-Se coupling reaction, a combination that makes the reaction biocompatible. The C-Se coupling reaction was also shown to happen for the diselenide analogue of the cyclic peptide vasopressin ((Se-Se)-AVP), and the Bos taurus glutathione peroxidase (GPx1) enzyme in ammonium acetate (2 mM, pH=7.0). The reaction mechanism, studied by DFT revealed a redox-based mechanism where the C-Se coupling is enabled by the reductive elimination of the cyclometalated Au(III) species into Au(I).
Collapse
Affiliation(s)
- Douglas H Nakahata
- Donostia International Physics Center - DIPC, Paseo Manuel de Lardizabal 4, 20018, Donostia, Euskadi, Gipuzkoa, Spain
| | - Ioannis Kanavos
- Institut des Sciences Analytiques et de Physico-Chimie Pour l'Environnement et les Matériaux - IPREM, E2S UPPA, CNRS, Université de Pau et des Pays de l'Adour, 64053, Pau, France
| | - Maria Zubiria-Ulacia
- Donostia International Physics Center - DIPC, Paseo Manuel de Lardizabal 4, 20018, Donostia, Euskadi, Gipuzkoa, Spain
- Polimero eta Material Aurreratuak: Fisika, Kimika eta Teknologia, Kimika Fakultatea Euskal Herriko Unibertsitatea UPV/EHU, Donostia, Spain, Euskal Herriko Unibertsitatea UPV/EHU, Paseo Manuel de Lardizabal 3, 20018, Donostia, Euskadi, Gipuzkoa, Spain
| | - Alex Inague
- Biochemistry Department, Institute of Chemistry, University of São Paulo, São Paulo, 05508000, SP, Brazil
| | - Luca Salassa
- Donostia International Physics Center - DIPC, Paseo Manuel de Lardizabal 4, 20018, Donostia, Euskadi, Gipuzkoa, Spain
- Polimero eta Material Aurreratuak: Fisika, Kimika eta Teknologia, Kimika Fakultatea Euskal Herriko Unibertsitatea UPV/EHU, Donostia, Spain, Euskal Herriko Unibertsitatea UPV/EHU, Paseo Manuel de Lardizabal 3, 20018, Donostia, Euskadi, Gipuzkoa, Spain
- Ikerbasque, Basque Foundation for Science, Plaza Euskadi 5, 48009, Bilbao, Euskadi, Bizkaia, Spain
| | - Ryszard Lobinski
- Institut des Sciences Analytiques et de Physico-Chimie Pour l'Environnement et les Matériaux - IPREM, E2S UPPA, CNRS, Université de Pau et des Pays de l'Adour, 64053, Pau, France
| | - Sayuri Miyamoto
- Biochemistry Department, Institute of Chemistry, University of São Paulo, São Paulo, 05508000, SP, Brazil
| | - Jon Mattin Matxain
- Donostia International Physics Center - DIPC, Paseo Manuel de Lardizabal 4, 20018, Donostia, Euskadi, Gipuzkoa, Spain
- Polimero eta Material Aurreratuak: Fisika, Kimika eta Teknologia, Kimika Fakultatea Euskal Herriko Unibertsitatea UPV/EHU, Donostia, Spain, Euskal Herriko Unibertsitatea UPV/EHU, Paseo Manuel de Lardizabal 3, 20018, Donostia, Euskadi, Gipuzkoa, Spain
| | - Luisa Ronga
- Institut des Sciences Analytiques et de Physico-Chimie Pour l'Environnement et les Matériaux - IPREM, E2S UPPA, CNRS, Université de Pau et des Pays de l'Adour, 64053, Pau, France
| | - Raphael E F de Paiva
- Donostia International Physics Center - DIPC, Paseo Manuel de Lardizabal 4, 20018, Donostia, Euskadi, Gipuzkoa, Spain
| |
Collapse
|
2
|
Gukathasan S, Obisesan OA, Saryazdi S, Ratliff L, Parkin S, Grossman RB, Awuah SG. A Conformationally Restricted Gold(III) Complex Elicits Antiproliferative Activity in Cancer Cells. Inorg Chem 2023; 62:13118-13129. [PMID: 37530672 PMCID: PMC11268950 DOI: 10.1021/acs.inorgchem.3c02066] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/03/2023]
Abstract
Diamine ligands are effective structural scaffolds for tuning the reactivity of transition-metal complexes for catalytic, materials, and phosphorescent applications and have been leveraged for biological use. In this work, we report the synthesis and characterization of a novel class of cyclometalated [C^N] Au(III) complexes bearing secondary diamines including a norbornane backbone, (2R,3S)-N2,N3-dibenzylbicyclo[2.2.1]heptane-2,3-diamine, or a cyclohexane backbone, (1R,2R)-N1,N2-dibenzylcyclohexane-1,2-diamine. X-ray crystallography confirms the square-planar geometry and chirality at nitrogen. The electronic character of the conformationally restricted norbornane backbone influences the electrochemical behavior with redox potentials of -0.8 to -1.1 V, atypical for Au(III) complexes. These compounds demonstrate promising anticancer activity, particularly, complex 1, which bears a benzylpyridine organogold framework, and supported by the bicyclic conformationally restricted diaminonorbornane, shows good potency in A2780 cells. We further show that a cellular response to 1 evokes reactive oxygen species (ROS) production and does not induce mitochondrial dysfunction. This class of complexes provides significant stability and reactivity for different applications in protein modification, catalysis, and therapeutics.
Collapse
Affiliation(s)
| | | | - Setareh Saryazdi
- Department of Chemistry, University of Kentucky, Lexington KY 40506, USA
| | - Libby Ratliff
- Department of Chemistry, University of Kentucky, Lexington KY 40506, USA
| | - Sean Parkin
- Department of Chemistry, University of Kentucky, Lexington KY 40506, USA
| | - Robert B. Grossman
- Department of Chemistry, University of Kentucky, Lexington KY 40506, USA
| | - Samuel G. Awuah
- Department of Chemistry, University of Kentucky, Lexington KY 40506, USA
- Center for Pharmaceutical Research and Innovation and Department of Pharmaceutical Sciences, College of Pharmacy University of Kentucky, Lexington KY 40536, USA
- Markey Cancer Center, University of Kentucky, Lexington KY 40536
| |
Collapse
|
3
|
Theulier CA, García-Rodeja Y, Miqueu K, Bouhadir G, Bourissou D. Lewis Acid-Assisted C(sp 3)-C(sp 3) Reductive Elimination at Gold. J Am Chem Soc 2023; 145:10800-10808. [PMID: 37137163 DOI: 10.1021/jacs.3c01974] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
The phosphine-borane iPr2P(o-C6H4)BFxyl2 (Fxyl = 3,5-(F3C)2C6H3) 1-Fxyl was found to promote the reductive elimination of ethane from [AuMe2(μ-Cl)]2. Nuclear magnetic resonance monitoring revealed the intermediate formation of the (1-Fxyl)AuMe2Cl complex. Density functional theory calculations identified a zwitterionic path as the lowest energy profile, with an overall activation barrier more than 10 kcal/mol lower than without borane assistance. The Lewis acid moiety first abstracts the chloride to generate a zwitterionic Au(III) complex, which then readily undergoes C(sp3)-C(sp3) coupling. The chloride is finally transferred back from boron to gold. The electronic features of this Lewis-assisted reductive elimination at gold have been deciphered by intrinsic bond orbital analyses. Sufficient Lewis acidity of boron is required for the ambiphilic ligand to trigger the C(sp3)-C(sp3) coupling, as shown by complementary studies with two other phosphine-boranes, and the addition of chlorides slows down the reductive elimination of ethane.
Collapse
Affiliation(s)
- Cyril A Theulier
- CNRS/Université Paul Sabatier, Laboratoire Hétérochimie Fondamentale et Appliquée (LHFA, UMR 5069), 118 Route de Narbonne, 31062 Cedex 09 Toulouse, France
| | - Yago García-Rodeja
- CNRS/Université de Pau et des Pays de l'Adour, E2S UPPA, Institut des Sciences Analytiques et de Physico-Chimie pour l'Environnement et les Matériaux (IPREM, UMR 5254), Hélioparc, 2 Avenue du Président Angot, 64053 Cedex 09 Pau, France
| | - Karinne Miqueu
- CNRS/Université de Pau et des Pays de l'Adour, E2S UPPA, Institut des Sciences Analytiques et de Physico-Chimie pour l'Environnement et les Matériaux (IPREM, UMR 5254), Hélioparc, 2 Avenue du Président Angot, 64053 Cedex 09 Pau, France
| | - Ghenwa Bouhadir
- CNRS/Université Paul Sabatier, Laboratoire Hétérochimie Fondamentale et Appliquée (LHFA, UMR 5069), 118 Route de Narbonne, 31062 Cedex 09 Toulouse, France
| | - Didier Bourissou
- CNRS/Université Paul Sabatier, Laboratoire Hétérochimie Fondamentale et Appliquée (LHFA, UMR 5069), 118 Route de Narbonne, 31062 Cedex 09 Toulouse, France
| |
Collapse
|
4
|
Au(III) Cyclometallated Compounds with 2-Arylpyridines and Their Derivatives or Analogues: 34 Years (1989–2022) of NMR and Single Crystal X-ray Studies. INORGANICS 2023. [DOI: 10.3390/inorganics11030100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023] Open
Abstract
A review paper on Au(III) cyclometallated compounds with 2-arylpyridines (2-phenylpyridine, 2-benzylpyridine, 2-benzoylpyridine, 2-phenoxypyridine, 2-phenylsulfanylpyridine, 2-anilinopyridine, 2-(naphth-2-yl)pyridine, 2-(9,9-dialkylfluoren-2-yl)pyridines, 2-(dibenzofuran-4-yl)pyridine, and their derivatives) and their analogues (2-arylquinolines, 1- and 3-arylisoquinolines, 7,8-benzoquinoline), with 113 references. A total of 554 species, containing κ2-N(1),C(6′)*-Au(III), or analogous moiety (i.e., chelated by nitrogen of the pyridine-like ring and the deprotonated ortho- carbon of the phenyl-like ring) and, thus, possessing a character intermediate between metal complexes and organometallics, studied in the years 1989–2022 by NMR spectroscopy and/or single crystal X-ray diffraction (207 X-ray structures), are described. The compounds for which biological or catalytic activity and the luminescence properties were studied are also quoted.
Collapse
|
5
|
Portugués A, Martínez-Nortes MÁ, Bautista D, González-Herrero P, Gil-Rubio J. Reductive Elimination Reactions in Gold(III) Complexes Leading to C(sp 3)-X (X = C, N, P, O, Halogen) Bond Formation: Inner-Sphere vs S N2 Pathways. Inorg Chem 2023; 62:1708-1718. [PMID: 36658748 PMCID: PMC9890567 DOI: 10.1021/acs.inorgchem.2c04166] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The reactions leading to the formation of C-heteroatom bonds in the coordination sphere of Au(III) complexes are uncommon, and their mechanisms are not well known. This work reports on the synthesis and reductive elimination reactions of a series of Au(III) methyl complexes containing different Au-heteroatom bonds. Complexes [Au(CF3)(Me)(X)(PR3)] (R = Ph, X = OTf, OClO3, ONO2, OC(O)CF3, F, Cl, Br; R = Cy, X = Me, OTf, Br) were obtained by the reaction of trans-[Au(CF3)(Me)2(PR3)] (R = Ph, Cy) with HX. The cationic complex cis-[Au(CF3)(Me)(PPh3)2]OTf was obtained by the reaction of [Au(CF3)(Me)(OTf)(PPh3)] with PPh3. Heating these complexes led to the reductive elimination of MeX (X = Me, Ph3P+, OTf, OClO3, ONO2, OC(O)CF3, F, Cl, Br). Mechanistic studies indicate that these reductive elimination reactions occur either through (a) the formation of tricoordinate intermediates by phosphine dissociation, followed by reductive elimination of MeX, or (b) the attack of weakly coordinating anionic (TfO- or ClO4-) or neutral nucleophiles (PPh3 or NEt3) to the Au-bound methyl carbon. The obtained results show for the first time that the nucleophilic substitution should be considered as a likely reductive elimination pathway in Au(III) alkyl complexes.
Collapse
Affiliation(s)
- Alejandro Portugués
- Departamento
de Química Inorgánica, Facultad de Química, Universidad de Murcia, Campus de Espinardo, 30100 Murcia, Spain
| | - Miguel Ángel Martínez-Nortes
- Departamento
de Química Inorgánica, Facultad de Química, Universidad de Murcia, Campus de Espinardo, 30100 Murcia, Spain
| | - Delia Bautista
- ACTI,
Universidad de Murcia, Campus de Espinardo, 30100 Murcia, Spain
| | - Pablo González-Herrero
- Departamento
de Química Inorgánica, Facultad de Química, Universidad de Murcia, Campus de Espinardo, 30100 Murcia, Spain
| | - Juan Gil-Rubio
- Departamento
de Química Inorgánica, Facultad de Química, Universidad de Murcia, Campus de Espinardo, 30100 Murcia, Spain,
| |
Collapse
|
6
|
Rigoulet M, Miqueu K, Bourissou D. Mechanistic Insights about the Ligand-Enabled Oxy-arylation/vinylation of Alkenes via Au(I)/Au(III) Catalysis. Chemistry 2022; 28:e202202110. [PMID: 35876716 PMCID: PMC9805180 DOI: 10.1002/chem.202202110] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Indexed: 01/09/2023]
Abstract
The mechanism of oxy-arylation/vinylation of alkenes catalyzed by the (MeDalphos)AuCl complex was comprehensively investigated by DFT. (P,N)Au(Ph)2+ and (P,N)Au(vinyl)2+ are key intermediates accounting for the activation of the alkenols and for their cyclization by outer-sphere nucleophilic attack of oxygen. The 5-exo and 6-endo paths have been computed and compared, reproducing the peculiar regioselectivity difference observed experimentally between 4-penten-1-ol, (E) and (Z)-4-hexen-1-ols. Examining the way the alkenol coordinates to gold (more η2 or η1 ) can offer, in some cases, a simple way to predict the favored path of cyclization.
Collapse
Affiliation(s)
- Mathilde Rigoulet
- CNRS/Université Paul SabatierUPS Laboratoire Hétérochimie Fondamentale et Appliquée (LHFA UMR 5069)118 route de Narbonne31062ToulouseFrance
| | - Karinne Miqueu
- CNRS/Université de Pau et des Pays de l'AdourE2S-UPPAInstitut des Sciences Analytiques et de Physico-Chimie pour l'Environnement et les Matériaux (IPREM UMR 5254)Hélioparc, 2 Avenue du Président Angot64053Pau Cedex 09France
| | - Didier Bourissou
- CNRS/Université Paul SabatierUPS Laboratoire Hétérochimie Fondamentale et Appliquée (LHFA UMR 5069)118 route de Narbonne31062ToulouseFrance
| |
Collapse
|