1
|
Altaf A, Sohail M, Altaf M, Nafady A, Sher M, Wahab MA. Enhanced Electrocatalytic Activity of Amorphized LaCoO 3 for Oxygen Evolution Reaction. Chem Asian J 2024; 19:e202300870. [PMID: 37943100 DOI: 10.1002/asia.202300870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 11/05/2023] [Accepted: 11/05/2023] [Indexed: 11/10/2023]
Abstract
Amorphous inorganic perovskites have attracted significant attention as efficient electrocatalysts due to their unique structural flexibility and good catalytic activity. In particular, the disordered structure and a surface rich in defects such as oxygen vacancies can contribute to the superior electrocatalytic activity of amorphous oxides compared to their crystalline counterpart. In this work, we report the synthesis of LaCoO3, followed by an amorphization process through urea reduction with tailored modifications. The as-synthesized catalysts were thoroughly tested for their performance in oxygen evolution reaction (OER), Remarkably, the amorphous LaCoO3 synthesized at 450 °C (referred to as LCO-4) exhibits excellent OER catalytic activity. At an overpotential of 310 mV, it achieved a current density of 10 mA/cm-2, exceedingly fast to 1 A/cm-2 at an overpotential of only 460 mV. Moreover, LCO-4 exhibited several advantageous features compared to pristine LaCoO3 and LaCoO3 amorphized at other two temperatures (350 °C, LCO-3, and 550 °C, LCO-5). The amorphized LCO-4 catalyst showed a higher electrochemically active surface area, a key factor in boosting catalytic performance. Additionally, LCO-4 demonstrated the lowest Tafel slope of 70 mVdec-1, further highlighting its exceptional OER activity. Furthermore, the long-term stability of LCO-4 is notably superior than pristine LaCoO3 (LCO-P) and the other amorphized samples (LCO-3 and LCO-5). The enhanced catalytic activity of LCO-4 can be attributed to its unique disordered structure, small crystallite size, and higher concentration of oxygen vacancies in the final catalyst.
Collapse
Affiliation(s)
- Amna Altaf
- Department of Chemistry, School of Natural Sciences, National University of Sciences and Technology, Islamabad, 44000, Pakistan
| | - Manzar Sohail
- Department of Chemistry, School of Natural Sciences, National University of Sciences and Technology, Islamabad, 44000, Pakistan
| | - Muhammad Altaf
- Department of Chemistry, Government College University, Lahore, 54000, Pakistan
| | - Ayman Nafady
- Chemistry Department, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Muhammad Sher
- Department of Chemistry, Allama Iqbal Open University, H-8, Islamabad, 44000, Pakistan
| | - Md A Wahab
- Energy and Process Engineering Laboratory, School of Mechanical, Medical and Process Engineering, Faculty of Science, Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD, 4000, Australia
| |
Collapse
|
2
|
Wang Y, Arandiyan H, Mofarah SS, Shen X, Bartlett SA, Koshy P, Sorrell CC, Sun H, Pozo-Gonzalo C, Dastafkan K, Britto S, Bhargava SK, Zhao C. Stacking Fault-Enriched MoNi 4/MoO 2 Enables High-Performance Hydrogen Evolution. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2402156. [PMID: 38869191 DOI: 10.1002/adma.202402156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 06/01/2024] [Indexed: 06/14/2024]
Abstract
Producing green hydrogen in a cost-competitive manner via water electrolysis will make the long-held dream of hydrogen economy a reality. Although platinum (Pt)-based catalysts show good performance toward hydrogen evolution reaction (HER), the high cost and scarce abundance challenge their economic viability and sustainability. Here, a non-Pt, high-performance electrocatalyst for HER achieved by engineering high fractions of stacking fault (SF) defects for MoNi4/MoO2 nanosheets (d-MoNi) through a combined chemical and thermal reduction strategy is shown. The d-MoNi catalyst offers ultralow overpotentials of 78 and 121 mV for HER at current densities of 500 and 1000 mA cm-2 in 1 M KOH, respectively. The defect-rich d-MoNi exhibits four times higher turnover frequency than the benchmark 20% Pt/C, together with its excellent durability (> 100 h), making it one of the best-performing non-Pt catalysts for HER. The experimental and theoretical results reveal that the abundant SFs in d-MoNi induce a compressive strain, decreasing the proton adsorption energy and promoting the associated combination of *H into hydrogen and molecular hydrogen desorption, enhancing the HER performance. This work provides a new synthetic route to engineer defective metal and metal alloy electrocatalysts for emerging electrochemical energy conversion and storage applications.
Collapse
Affiliation(s)
- Yuan Wang
- Department of Chemical Engineering, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Hamidreza Arandiyan
- Laboratory of Advanced Catalysis for Sustainability, School of Chemistry, University of Sydney, Sydney, NSW, 2006, Australia
- Centre for Applied Materials and Industrial Chemistry (CAMIC), School of Science, RMIT University, Melbourne, VIC, 3001, Australia
| | - Sajjad S Mofarah
- School of Materials Science and Engineering, UNSW Sydney, Sydney, NSW, 2052, Australia
| | - Xiangjian Shen
- Engineering Research Centre of Advanced Functional Material Manufacturing of Ministry of Education, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Stuart A Bartlett
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, OX11 0DE, UK
| | - Pramod Koshy
- School of Materials Science and Engineering, UNSW Sydney, Sydney, NSW, 2052, Australia
| | - Charles C Sorrell
- School of Materials Science and Engineering, UNSW Sydney, Sydney, NSW, 2052, Australia
| | - Hongyu Sun
- School of Resources and Materials, Northeastern University at Qinhuangdao, Qinhuangdao, 066004, P. R. China
| | - Cristina Pozo-Gonzalo
- Institute for Frontier Materials, Deakin University, Melbourne, VIC, 3125, Australia
| | - Kamran Dastafkan
- School of Chemistry, The University of New South Wales, Sydney, NSW, 2052, Australia
| | - Sylvia Britto
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, OX11 0DE, UK
| | - Suresh K Bhargava
- Centre for Applied Materials and Industrial Chemistry (CAMIC), School of Science, RMIT University, Melbourne, VIC, 3001, Australia
| | - Chuan Zhao
- School of Chemistry, The University of New South Wales, Sydney, NSW, 2052, Australia
| |
Collapse
|
3
|
Ghosh B, Zhang C, Frick S, Cho EJ, Woods T, Yang Y, Perry NH, Klein A, Yang H. Defect Engineering in Composition and Valence Band Center of Y 2(Y xRu 1-x) 2O 7-δ Pyrochlore Electrocatalysts for Oxygen Evolution Reaction. J Am Chem Soc 2024; 146:18524-18534. [PMID: 38820244 DOI: 10.1021/jacs.4c04292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2024]
Abstract
Oxygen evolution reaction (OER) takes place in various types of electrochemical devices that are pivotal for the conversion and storage of renewable energy. This paper describes a strategy in the design of solid-state structures of OER electrocatalysts through controlling the cation substitution on the active metal site and consequently valence band center position of site-mixed Y2(YxRu1-x)2O7-δ pyrochlore to achieve high catalytic activity. We found that partially replacing the B-site Ru4+ cation with A-site Y3+ in pyrochlore-structured Y2Ru2O7-δ modifies the oxidation state of B-site Ru from 4+ to 5+, as observed by electron paramagnetic resonance (EPR) spectroscopy but does not continuously increase the oxygen vacancy concentration in these oxygen substoichiometric compositions, as quantified by thermogravimetric analysis (TGA) decomposition studies. We found the increased Ru oxidation state leads to a downshift in valence band center. X-ray photoelectron spectroscopy (XPS) analysis was performed to quantitatively determine the optimal band center to be ∼1.27 eV below the Fermi energy level based on the analysis of the valence band edge of these Ru-based Y2(YxRu1-x)2O7-δ OER electrocatalysts. This work highlights that defect engineering can be a practical, effective approach to the optimization of oxidation state and electronic band center for high OER catalytic performance in a quantitative manner.
Collapse
Affiliation(s)
- Bidipta Ghosh
- Department of Chemical and Biomolecular Engineering, University of Illinois Urbana-Champaign, 600 S. Mathews Avenue, Urbana, Illinois 61801, United States
| | - Cheng Zhang
- Department of Chemical and Biomolecular Engineering, University of Illinois Urbana-Champaign, 600 S. Mathews Avenue, Urbana, Illinois 61801, United States
| | - Stefanie Frick
- Department of Electronic Structure of Materials, Institute of Materials Science, Technical University of Darmstadt, Otto-Berndt-Straße 3, Darmstadt, Germany, 64287
| | - En Ju Cho
- Department of Materials Science and Engineering, University of Illinois Urbana-Champaign, 1304 W. Green Street, Urbana, Illinois 61801, United States
- Materials Research Laboratory, University of Illinois Urbana-Champaign, 104 S. Goodwin Avenue, Urbana, Illinois 61801, United States
| | - Toby Woods
- Center of Research and Educational Support, X-ray Diffraction Laboratory, School of Chemical Sciences, University of Illinois Urbana-Champaign, 505 South Mathews Avenue, Urbana, Illinois 61801, United States
| | - Yujie Yang
- Department of Chemical and Biomolecular Engineering, University of Illinois Urbana-Champaign, 600 S. Mathews Avenue, Urbana, Illinois 61801, United States
| | - Nicola H Perry
- Department of Materials Science and Engineering, University of Illinois Urbana-Champaign, 1304 W. Green Street, Urbana, Illinois 61801, United States
- Materials Research Laboratory, University of Illinois Urbana-Champaign, 104 S. Goodwin Avenue, Urbana, Illinois 61801, United States
| | - Andreas Klein
- Department of Electronic Structure of Materials, Institute of Materials Science, Technical University of Darmstadt, Otto-Berndt-Straße 3, Darmstadt, Germany, 64287
| | - Hong Yang
- Department of Chemical and Biomolecular Engineering, University of Illinois Urbana-Champaign, 600 S. Mathews Avenue, Urbana, Illinois 61801, United States
- Materials Research Laboratory, University of Illinois Urbana-Champaign, 104 S. Goodwin Avenue, Urbana, Illinois 61801, United States
| |
Collapse
|
4
|
Lakhan MN, Hanan A, Hussain A, Ali Soomro I, Wang Y, Ahmed M, Aftab U, Sun H, Arandiyan H. Transition metal-based electrocatalysts for alkaline overall water splitting: advancements, challenges, and perspectives. Chem Commun (Camb) 2024; 60:5104-5135. [PMID: 38625567 DOI: 10.1039/d3cc06015b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
Water electrolysis is a promising method for efficiently producing hydrogen and oxygen, crucial for renewable energy conversion and fuel cell technologies. The hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) are two key electrocatalytic reactions occurring during water splitting, necessitating the development of active, stable, and low-cost electrocatalysts. Transition metal (TM)-based electrocatalysts, spanning noble metals and TM oxides, phosphides, nitrides, carbides, borides, chalcogenides, and dichalcogenides, have garnered significant attention due to their outstanding characteristics, including high electronic conductivity, tunable valence electron configuration, high stability, and cost-effectiveness. This timely review discusses developments in TM-based electrocatalysts for the HER and OER in alkaline media in the last 10 years, revealing that the exposure of more accessible surface-active sites, specific electronic effects, and string effects are essential for the development of efficient electrocatalysts towards electrochemical water splitting application. This comprehensive review serves as a guide for designing and constructing state-of-the-art, high-performance bifunctional electrocatalysts based on TMs, particularly for applications in water splitting.
Collapse
Affiliation(s)
- Muhammad Nazim Lakhan
- Applied Chemistry and Environmental Science, School of Science, STEM College, RMIT University, Melbourne, Australia
| | - Abdul Hanan
- Sunway Center for Electrochemical Energy and Sustainable Technology, SCEEST, Sunway University, Bandar Sunway, Malaysia
| | - Altaf Hussain
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, P. R. China
- University of Science and Technology of China, Hefei, P. R. China
| | - Irfan Ali Soomro
- Institute of Computational Chemistry, College of Chemistry, Beijing University of Chemical Technology, P. R. China
| | - Yuan Wang
- Department of Chemical Engineering, The University of Melbourne, Melbourne, VIC 3010, Australia.
| | - Mukhtiar Ahmed
- State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Beijing, P. R. China
| | - Umair Aftab
- Department of Metallurgy and Materials Engineering, Mehran University of Engineering and Technology, Jamshoro, Pakistan.
| | - Hongyu Sun
- School of Resources and Materials, Northeastern University at Qinhuangdao, 066004 Qinhuangdao, P. R. China
| | - Hamidreza Arandiyan
- Centre for Advanced Materials and Industrial Chemistry (CAMIC), School of Science, RMIT University, Melbourne, VIC 3000, Australia.
- Laboratory of Advanced Catalysis for Sustainability, School of Chemistry, University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
5
|
Wang Y, Wang T, Arandiyan H, Song G, Sun H, Sabri Y, Zhao C, Shao Z, Kawi S. Advancing Catalysts by Stacking Fault Defects for Enhanced Hydrogen Production: A Review. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2313378. [PMID: 38340031 DOI: 10.1002/adma.202313378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 02/02/2024] [Indexed: 02/12/2024]
Abstract
Green hydrogen, derived from water splitting powered by renewable energy such as solar and wind energy, provides a zero-emission solution crucial for revolutionizing hydrogen production and decarbonizing industries. Catalysts, particularly those utilizing defect engineering involving the strategical introduction of atomic-level imperfections, play a vital role in reducing energy requirements and enabling a more sustainable transition toward a hydrogen-based economy. Stacking fault (SF) defects play an important role in enhancing the electrocatalytic processes by reshaping surface reactivity, increasing active sites, improving reactants/product diffusion, and regulating electronic structure due to their dense generation ability and profound impact on catalyst properties. This review explores SF in metal-based materials, covering synthetic methods for the intentional introduction of SF and their applications in hydrogen production, including oxygen evolution reaction, photo- and electrocatalytic hydrogen evolution reaction, overall water splitting, and various other electrocatalytic processes such as oxygen reduction reaction, nitrate reduction reaction, and carbon dioxide reduction reaction. Finally, this review addresses the challenges associated with SF-based catalysts, emphasizing the importance of a detailed understanding of the properties of SF-based catalysts to optimize their electrocatalytic performance. It provides a comprehensive overview of their various applications in electrocatalytic processes, providing valuable insights for advancing sustainable energy technologies.
Collapse
Affiliation(s)
- Yuan Wang
- Department of Chemical Engineering, The University of Melbourne, Parkville, VIC, 3010, Australia
- Department of Chemical & Biomolecular Engineering, National University of Singapore, Singapore, 117585, Singapore
| | - Tian Wang
- Department of Chemical & Biomolecular Engineering, National University of Singapore, Singapore, 117585, Singapore
| | - Hamidreza Arandiyan
- Centre for Advanced Materials and Industrial Chemistry (CAMIC), School of Science, RMIT University, Melbourne, VIC, 3000, Australia
- Laboratory of Advanced Catalysis for Sustainability, School of Chemistry, University of Sydney, Sydney, NSW, 2006, Australia
| | - Guoqiang Song
- Department of Chemical & Biomolecular Engineering, National University of Singapore, Singapore, 117585, Singapore
| | - Hongyu Sun
- DENSsolutions B.V., Informaticalaan 12, 2628 ZD, Delft, Netherlands
| | - Ylias Sabri
- Centre for Advanced Materials and Industrial Chemistry (CAMIC), School of Engineering, RMIT University, Melbourne, VIC, 3000, Australia
| | - Chuan Zhao
- School of Chemistry, The University of New South Wales, Sydney, NSW, 2052, Australia
| | - Zongping Shao
- WA School of Mines: Minerals, Energy and Chemical Engineering, Curtin University, Perth, WA, 6845, Australia
| | - Sibudjing Kawi
- Department of Chemical & Biomolecular Engineering, National University of Singapore, Singapore, 117585, Singapore
| |
Collapse
|
6
|
Lakhan MN, Hanan A, Wang Y, Liu S, Arandiyan H. Recent Progress on Nickel- and Iron-Based Metallic Organic Frameworks for Oxygen Evolution Reaction: A Review. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:2465-2486. [PMID: 38265034 DOI: 10.1021/acs.langmuir.3c03558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2024]
Abstract
Developing sustainable energy solutions to safeguard the environment is a critical ongoing demand. Electrochemical water splitting (EWS) is a green approach to create effective and long-lasting electrocatalysts for the water oxidation process. Metal organic frameworks (MOFs) have become commonly utilized materials in recent years because of their distinguishing pore architectures, metal nodes easy accessibility, large specific surface areas, shape, and adaptable function. This review outlines the most significant developments in current work on developing improved MOFs for enhancing EWS. The benefits and drawbacks of MOFs are first discussed in this review. Then, some cutting-edge methods for successfully modifying MOFs are also highlighted. Recent progress on nickel (Ni) and iron (Fe) based MOFs have been critically discussed. Finally, a comprehensive analysis of the existing challenges and prospects for Ni- and Fe-based MOFs are summarized.
Collapse
Affiliation(s)
- Muhammad Nazim Lakhan
- Applied Chemistry and Environmental Science, School of Science, STEM College, RMIT University, Melbourne, VIC 3000, Australia
| | - Abdul Hanan
- Sunway Centre for Electrochemical Energy and Sustainable Technology (SCEEST), School of Engineering and Technology, Sunway University, Selangor 47500, Malaysia
| | - Yuan Wang
- Department of Chemical Engineering, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Shaomin Liu
- School of Advanced Engineering, Great Bay University, Dongguan 523000, China
| | - Hamidreza Arandiyan
- Applied Chemistry and Environmental Science, School of Science, STEM College, RMIT University, Melbourne, VIC 3000, Australia
- Centre for Applied Materials and Industrial Chemistry (CAMIC), School of Science, RMIT University, Melbourne, VIC 3000, Australia
| |
Collapse
|
7
|
Zou A, Tang Y, Wu C, Li J, Meng H, Wang Z, Ma Y, An H, Zhong H, Zhang Q, Zhang X, Xue J, Wang X, Wu J. Understanding the Origin of Reconstruction in Transition Metal Oxide Oxygen Evolution Reaction Electrocatalysts. CHEMSUSCHEM 2024; 17:e202301195. [PMID: 37743254 DOI: 10.1002/cssc.202301195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 09/18/2023] [Accepted: 09/19/2023] [Indexed: 09/26/2023]
Abstract
Electrochemical water splitting to generate hydrogen energy fills a gap in the intermittency issues for wind and sunlight power. Transition metal (TM) oxides have attracted significant interest in water oxidation due to their availability and excellent activity. Typically, the transitional metal oxyhydroxides species derived from these metal oxides are often acknowledged as the real catalytic species, due to the irreversible structural reconstruction. Hence, in order to innovatively design new catalyst, it is necessary to provide a comprehensive understanding for the origin of surface reconstruction. In this review, the most recent developments in the reconstruction of transition metal-based oxygen evolution reaction electrocatalysts were introduced, and various chemical driving forces behind the reconstruction mechanism were discussed. At the same time, specific strategies for modulating pre-catalysts to achieve controllable reconfiguration, such as metal substituting, increase of structural defect sites, were summarized. At last, the issues for the further understanding and optimization of transition metal oxides compositions based on structural reconstruction were provided.
Collapse
Affiliation(s)
- Anqi Zou
- College of Materials Science and Engineering, Sichuan University, Chengdu, 610065, China
| | - Ying Tang
- College of Materials Science and Engineering, Sichuan University, Chengdu, 610065, China
| | - Chao Wu
- College of Materials Science and Engineering, Sichuan University, Chengdu, 610065, China
- Institute of Sustainability for Chemical, Energy and Environment (ISCE2), Agency for Science, Technology and Research, Singapore, 627833, Singapore
| | - Junhua Li
- College of Materials Science and Engineering, Sichuan University, Chengdu, 610065, China
| | - Haoyan Meng
- College of Materials Science and Engineering, Sichuan University, Chengdu, 610065, China
| | - Zhen Wang
- College of Materials Science and Engineering, Sichuan University, Chengdu, 610065, China
| | - Yifan Ma
- Department of Materials Science and Engineering, National University of Singapore, Singapore, 117575, Singapore
| | - Hang An
- Department of Materials Science and Engineering, National University of Singapore, Singapore, 117575, Singapore
| | - Haoyin Zhong
- Department of Materials Science and Engineering, National University of Singapore, Singapore, 117575, Singapore
| | - Qi Zhang
- Department of Materials Science and Engineering, National University of Singapore, Singapore, 117575, Singapore
| | - Xin Zhang
- Department of Materials Science and Engineering, National University of Singapore, Singapore, 117575, Singapore
| | - Junmin Xue
- Department of Materials Science and Engineering, National University of Singapore, Singapore, 117575, Singapore
| | - Xiaopeng Wang
- College of Materials Science and Engineering, Sichuan University, Chengdu, 610065, China
- Department of Materials Science and Engineering, National University of Singapore, Singapore, 117575, Singapore
| | - Jiagang Wu
- College of Materials Science and Engineering, Sichuan University, Chengdu, 610065, China
| |
Collapse
|
8
|
Mastering the D-Band Center of Iron-Series Metal-Based Electrocatalysts for Enhanced Electrocatalytic Water Splitting. Int J Mol Sci 2022; 23:ijms232315405. [PMID: 36499732 PMCID: PMC9737096 DOI: 10.3390/ijms232315405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 11/20/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022] Open
Abstract
The development of non-noble metal-based electrocatalysts with high performance for hydrogen evolution reaction and oxygen evolution reaction is highly desirable in advancing electrocatalytic water-splitting technology but proves to be challenging. One promising way to improve the catalytic activity is to tailor the d-band center. This approach can facilitate the adsorption of intermediates and promote the formation of active species on surfaces. This review summarizes the role and development of the d-band center of materials based on iron-series metals used in electrocatalytic water splitting. It mainly focuses on the influence of the change in the d-band centers of different composites of iron-based materials on the performance of electrocatalysis. First, the iron-series compounds that are commonly used in electrocatalytic water splitting are summarized. Then, the main factors affecting the electrocatalytic performances of these materials are described. Furthermore, the relationships among the above factors and the d-band centers of materials based on iron-series metals and the d-band center theory are introduced. Finally, conclusions and perspectives on remaining challenges and future directions are given. Such information can be helpful for adjusting the active centers of catalysts and improving electrochemical efficiencies in future works.
Collapse
|