1
|
Erden K, Soyler D, Barsella A, Şahin O, Soylemez S, Dengiz C. Synthesis and Optical Characterization of Hydrazone-Substituted Push-Pull-Type NLOphores. J Org Chem 2024; 89:13192-13207. [PMID: 39255504 PMCID: PMC11421011 DOI: 10.1021/acs.joc.4c01328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
Two distinct families of NLOphores featuring hydrazone donors were synthesized using click-type [2 + 2] cycloaddition retroelectrocyclizations (CA-RE). Despite the limitations in the substrate scope, it was shown for the first time that hydrazone-activated alkynes could undergo reactions with TCNE/TCNQ. The electrochemical, photophysical, and second-order nonlinear optical (NLO) characteristics of the chromophores were analyzed utilizing experimental and computational approaches. Chromophores 17-21 and 23-27 exhibited two reduction waves, along with one oxidation wave that can be attributed to the hydrazone moiety. All chromophores exhibit charge-transfer bands extending from the visible to the near-infrared region. The λmax of hydrazone-based chromophores falls within the range of 473 to 725 nm. Additionally, all chromophores exhibited positive solvatochromism. Computational studies have been performed to elucidate the origin of the low-energy absorption bands. Parameters such as dipole moment, band gaps, electronegativity, global chemical hardness/softness, average polarizability, and first hyperpolarizability were calculated to obtain information about NLO properties of the target structures. The thermal stabilities of the NLOphores were assessed through TGA. Experimental NLO measurements were conducted using the electric field-induced second harmonic generation (EFISHG) technique. The studied structures demonstrated NLO responses, with μβ values between 520 × 10-48 esu and 5300 × 10-48 esu.
Collapse
Affiliation(s)
- Kübra Erden
- Department of Chemistry, Middle East Technical University, 06800 Ankara, Turkey
| | - Dilek Soyler
- Department of Biomedical Engineering, Necmettin Erbakan University, 42090 Konya, Turkey
- Science and Technology Research and Application Center (BİTAM), Necmettin Erbakan University, 42090 Konya, Turkey
| | - Alberto Barsella
- Département d'Optique Ultra-Rapide et Nanophotonique, IPCMS-CNRS, 23 Rue du Loess, BP 43, 67034 Strasbourg, Cedex 2, France
| | - Onur Şahin
- Department of Occupational Health & Safety, Faculty of Health Sciences, Sinop University, Sinop 57000, Turkey
| | - Saniye Soylemez
- Department of Biomedical Engineering, Necmettin Erbakan University, 42090 Konya, Turkey
- Science and Technology Research and Application Center (BİTAM), Necmettin Erbakan University, 42090 Konya, Turkey
| | - Cagatay Dengiz
- Department of Chemistry, Middle East Technical University, 06800 Ankara, Turkey
| |
Collapse
|
2
|
Yamada M. Perspectives on push-pull chromophores derived from click-type [2 + 2] cycloaddition-retroelectrocyclization reactions of electron-rich alkynes and electron-deficient alkenes. Beilstein J Org Chem 2024; 20:125-154. [PMID: 38292046 PMCID: PMC10825803 DOI: 10.3762/bjoc.20.13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 01/04/2024] [Indexed: 02/01/2024] Open
Abstract
Various push-pull chromophores can be synthesized in a single and atom-economical step through [2 + 2] cycloaddition-retroelectrocyclization (CA-RE) reactions involving diverse electron-rich alkynes and electron-deficient alkenes. In this review, a comprehensive investigation of the recent and noteworthy advancements in the research on push-pull chromophores prepared via the [2 + 2] CA-RE reaction is conducted. In particular, an overview of the physicochemical properties of the family of these compounds that have been investigated is provided to clarify their potential for future applications.
Collapse
Affiliation(s)
- Michio Yamada
- Department of Chemistry, Tokyo Gakugei University, Nukuikitamachi 4-1-1, Koganei, Tokyo 184-8501, Japan
| |
Collapse
|
3
|
Lin Z, Zhong YH, Zhong L, Ye X, Chung LH, Hu X, Xu Z, Yu L, He J. Minimalist Design for Solar Energy Conversion: Revamping the π-Grid of an Organic Framework into Open-Shell Superabsorbers. JACS AU 2023; 3:1711-1722. [PMID: 37388679 PMCID: PMC10302748 DOI: 10.1021/jacsau.3c00132] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 05/23/2023] [Accepted: 05/23/2023] [Indexed: 07/01/2023]
Abstract
We apply a versatile reaction to a versatile solid: the former involves the electron-deficient alkene tetracyanoethylene (TCNE) as the guest reactant; the latter consists of stacked 2D honeycomb covalent networks based on the electron-rich β-ketoenamine hinges that also activate the conjugated, connecting alkyne units. The TCNE/alkyne reaction is a [2 + 2] cycloaddition-retroelectrocyclization (CA-RE) that forms strong push-pull units directly into the backbone of the framework-i.e., using only the minimalist "bare-bones" scaffold, without the need for additional side groups of alkynes or other functions. The ability of the stacked alkyne units (i.e., as part of the honeycomb mass) to undergo such extensive rearrangement highlights the structural flexibility of these covalent organic framework (COF) hosts. The COF solids remain porous, crystalline, and air-/water-stable after the CA-RE modification, while the resulting push-pull units feature distinct open-shell/free-radical character, are strongly light-absorbing, and shift the absorption ends from 590 nm to around 1900 nm (band gaps from 2.17-2.23 to 0.87-0.95 eV), so as to better capture sunlight (especially the infrared region which takes up 52% of the solar energy). As a result, the modified COF materials achieve the highest photothermal conversion performances, holding promise in thermoelectric power generation and solar steam generation (e.g., with solar-vapor conversion efficiencies >96%).
Collapse
Affiliation(s)
- Zhiqing Lin
- School
of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
| | - Yuan-Hui Zhong
- School
of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
| | - Leheng Zhong
- School
of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
| | - Xinhe Ye
- School
of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
| | - Lai-Hon Chung
- School
of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
| | - Xuanhe Hu
- School
of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
| | - Zhengtao Xu
- Institute
of Materials Research and Engineering (IMRE), Agency for Science,
Technology and Research (A*STAR), 2 Fusionopolis Way, Singapore 138634, Singapore
| | - Lin Yu
- School
of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
| | - Jun He
- School
of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
| |
Collapse
|
4
|
Patil Y, Butenschön H, Misra R. Tetracyanobutadiene Bridged Push-Pull Chromophores: Development of New Generation Optoelectronic Materials. CHEM REC 2023; 23:e202200208. [PMID: 36202630 DOI: 10.1002/tcr.202200208] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/09/2022] [Indexed: 01/21/2023]
Abstract
This review describes the design strategies used for the synthesis of various tetracyanobutadiene bridged donor-acceptor molecular architectures by a click type [2+2] cycloaddition-retroelectrocyclization (CA-RE) reaction sequence. The photophysical and electrochemical properties of the tetracyanobutadiene bridged molecular architectures based on various moieties including diketopyrrolopyrrole, isoindigo, benzothiadiazole, pyrene, pyrazabole, truxene, boron dipyrromethene (BODIPY), phenothiazine, triphenylamine, thiazole and bisthiazole are summarized. Further, we discuss some important applications of the tetracyanobutadiene bridged derivatives in dye sensitized solar cells, bulk heterojunction solar cells and photothermal cancer therapy.
Collapse
Affiliation(s)
- Yuvraj Patil
- Department of Chemistry, Indian Institute of Technology Indore, Indore, 453552, India.,Present Address: Institut des Sciences Chimiques de Rennes (ISCR) -, Université de Rennes 1, Rennes, 35700, France
| | - Holger Butenschön
- Institut für Organische Chemie, Leibniz Universität Hannover, Schneiderberg 1B, 30167, Hannover, Germany
| | - Rajneesh Misra
- Department of Chemistry, Indian Institute of Technology Indore, Indore, 453552, India
| |
Collapse
|
5
|
Yadav IS, Jang Y, Rout Y, Thomas MB, Misra R, D'Souza F. Near-IR Intramolecular Charge Transfer in Strongly Interacting Diphenothiazene-TCBD and Diphenothiazene-DCNQ Push-Pull Triads. Chemistry 2022; 28:e202200348. [PMID: 35275434 DOI: 10.1002/chem.202200348] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Indexed: 12/15/2022]
Abstract
Three types of phenothiazines dimers (PTZ-PTZ, 1-3), covalently linked with one or two acetylene linkers, were synthesized by copper-mediated Eglinton and Pd-catalyzed Sonogashira coupling reactions in excellent yields. The dimers 1-3 were further engaged in [2+2] cycloaddition-retroelectrocyclization reactions with strong electron acceptors, tetracyanoethylene (TCNE) and 7,7,8,8-tetracyanoquinodimethane (TCNQ) to yield tetracyanobutadiene (TCBD, 1 a-3 a), and dicyanoquinodimethane (DCNQ, 1 b-3 b) functionalized donor-acceptor (D-A) conjugates, respectively. The conjugates were examined by a series of spectral, computational, and electrochemical studies. Strong ground state polarization leading to new optical transitions was witnessed in both series of D-A conjugates. In the case of DCNQ derived D-A system 1 b, the optical coverage extended until 1200 nm in benzonitrile, making this a rare class of D-A ICT system. Multiple redox processes were witnessed in these D-A systems, and the frontier orbitals generated on DFT optimized structures further supported the ICT phenomenon. Photochemical studies performed using femtosecond pump-probe studies confirmed solvent polarity dependent excited state charge transfer and separation in these novel multi-modular D-A conjugates. The charge-separated states lasted up to 70 ps in benzonitrile while in toluene slightly prolonged lifetime of up to 100 ps was witnessed. The significance of phenothiazine dimer in wide-band optical capture all the way into the near-IR region and promoting ultrafast photoinduced charge transfer in the D-A-D configured multi-modular systems, and the effect of donor-acceptor distance and the solvent polarity was the direct outcome of the present study.
Collapse
Affiliation(s)
- Indresh S Yadav
- Department of Chemistry, Indian Institute of Technology, 453552, Indore, India
| | - Youngwoo Jang
- Department of Chemistry, University of North Texas, 1155 Union Circle, #305070, Denton, TX 76203-5017, USA
| | - Yogajivan Rout
- Department of Chemistry, Indian Institute of Technology, 453552, Indore, India
| | - Michael B Thomas
- Department of Chemistry, University of North Texas, 1155 Union Circle, #305070, Denton, TX 76203-5017, USA
| | - Rajneesh Misra
- Department of Chemistry, Indian Institute of Technology, 453552, Indore, India
| | - Francis D'Souza
- Department of Chemistry, University of North Texas, 1155 Union Circle, #305070, Denton, TX 76203-5017, USA
| |
Collapse
|
6
|
Poddar M, Rout Y, Misra R. Donor‐Acceptor Based 1,8‐Naphthalimide Substituted Phenothiazines: Tuning of HOMO‐LUMO Gap. ASIAN J ORG CHEM 2021. [DOI: 10.1002/ajoc.202100628] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Madhurima Poddar
- Discipline of Chemistry Indian Institute of Technology Indore Indore 453552 India
| | - Yogajivan Rout
- Discipline of Chemistry Indian Institute of Technology Indore Indore 453552 India
| | - Rajneesh Misra
- Discipline of Chemistry Indian Institute of Technology Indore Indore 453552 India
| |
Collapse
|