1
|
Jiang QC, Iwai T, Jo M, Hosomi T, Yanagida T, Uchida K, Hashimoto K, Nakazono T, Yamada Y, Kobayashi A, Takizawa SY, Masai H, Terao J. Insulated π-Conjugated Azido Scaffolds for Stepwise Functionalization via Huisgen Cycloaddition on Metal Oxide Surfaces. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2403717. [PMID: 39046075 DOI: 10.1002/smll.202403717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 07/11/2024] [Indexed: 07/25/2024]
Abstract
In organic-inorganic hybrid devices, fine interfacial controls by organic components directly affect the device performance. However, fabrication of uniformed interfaces using π-conjugated molecules remains challenging due to facile aggregation by their strong π-π interaction. In this report, a π-conjugated scaffold insulated by covalently linked permethylated α-cyclodextrin moiety with an azido group is synthesized for surface Huisgen cycloaddition on metal oxides. Fourier-transformed infrared (FT-IR) spectroscopy and X-ray photoelectron spectroscopy confirm the successful immobilization of the insulated azido scaffold on ZnO nanowire array surfaces. Owing to the highly independent immobilization, the scaffold allows rapid and complete conversion of the surface azido group in Huisgen cycloaddition reactions with ethynyl-terminated molecules, as confirmed by FT-IR spectroscopy monitoring. Cyclic voltammetry analysis of modified indium tin oxide substrates shows the positive effects of cyclic insulation toward suppression of intermolecular interaction between molecules introduced by the surface Huisgen cycloaddition reactions. The utility of the scaffold for heterogeneous catalysis is demonstrated in electrocatalytic selective O2 reduction to H2O2 with cobalt(II) chlorin modified fluorine doped tin oxide electrode and photocatalytic H2 generation with iridium(III) dye-sensitized Pt-loaded TiO2 nanoparticle. These results highlight the potential of the insulated azido scaffold for a stepwise functionalization process, enabling precise and well-defined hybrid interfaces.
Collapse
Affiliation(s)
- Qi-Chun Jiang
- Department of Basic Science, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1, Komaba, Meguro-ku, Tokyo, 153-8902, Japan
| | - Tomohiro Iwai
- Department of Basic Science, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1, Komaba, Meguro-ku, Tokyo, 153-8902, Japan
| | - Morihiro Jo
- Department of Basic Science, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1, Komaba, Meguro-ku, Tokyo, 153-8902, Japan
| | - Takuro Hosomi
- Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Takeshi Yanagida
- Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Ken Uchida
- Department of Materials Engineering, Graduate School of Engineering, The University of Tokyo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Kazuki Hashimoto
- Department of Chemistry and Bioengineering, Graduate School of Engineering, Osaka Metropolitan University, 3-3-138 Sugimoto, Sumiyoshi, Osaka, 558-8585, Japan
| | - Takashi Nakazono
- Research Center for Artificial Photosynthesis (ReCAP), Osaka Metropolitan University, 3-3-138 Sugimoto, Sumiyoshi, Osaka, 558-8585, Japan
| | - Yusuke Yamada
- Department of Chemistry and Bioengineering, Graduate School of Engineering, Osaka Metropolitan University, 3-3-138 Sugimoto, Sumiyoshi, Osaka, 558-8585, Japan
- Research Center for Artificial Photosynthesis (ReCAP), Osaka Metropolitan University, 3-3-138 Sugimoto, Sumiyoshi, Osaka, 558-8585, Japan
| | - Atsushi Kobayashi
- Department of Chemistry, Faculty of Science, Hokkaido University, North-10 West-8, Kita-ku, Sapporo, 060-0810, Japan
| | - Shin-Ya Takizawa
- Department of Basic Science, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1, Komaba, Meguro-ku, Tokyo, 153-8902, Japan
| | - Hiroshi Masai
- Department of Basic Science, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1, Komaba, Meguro-ku, Tokyo, 153-8902, Japan
| | - Jun Terao
- Department of Basic Science, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1, Komaba, Meguro-ku, Tokyo, 153-8902, Japan
| |
Collapse
|
2
|
Cutillas-Font G, Pastor A, Alajarin M, Martinez-Cuezva A, Marin-Luna M, Batanero B, Berna J. Mechanical insulation of aza-Pechmann dyes within [2]rotaxanes. Chem Sci 2024; 15:13823-13831. [PMID: 39211492 PMCID: PMC11352530 DOI: 10.1039/d4sc03657c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 07/28/2024] [Indexed: 09/04/2024] Open
Abstract
Aza-Pechmann derivatives have emerged as interesting building blocks for the preparation of organic electronic devices. The development of methodologies aimed to enhance their chemical stability and modulate their physical and chemical properties constitutes an interesting goal. Here we report the synthesis of mechanically interlocked aza-Pechmann dyes with benzylic amide macrocycles, along with the study of how the mechanical bond impacts their stability, photophysical and redox properties. Rotaxanes composed of Pechmann dilactams as threads exhibit one of the highest energy barriers for macrocyclic ring rotation, highlighting the strength of the attractive interactions ring-thread within the interlocked structure. Their enhanced thermal stability, compared to the non-interlocked counterparts, evidences the protective role of the macrocycle. Computational and electrochemical analyses indicate that the benzylic amide macrocycle improves the stability of the HOMO and LUMO orbitals of the interlocked dyes. Finally, spectroscopic and electrochemical data reveal that the macrocycle subtly modulates the optoelectronic and redox behaviour of the Pechmann dilactams.
Collapse
Affiliation(s)
- Guillermo Cutillas-Font
- Department of Organic Chemistry, Faculty of Chemistry, University of Murcia, Regional Campus of International Excellence Campus Mare Nostrum 30100 Murcia Spain
| | - Aurelia Pastor
- Department of Organic Chemistry, Faculty of Chemistry, University of Murcia, Regional Campus of International Excellence Campus Mare Nostrum 30100 Murcia Spain
| | - Mateo Alajarin
- Department of Organic Chemistry, Faculty of Chemistry, University of Murcia, Regional Campus of International Excellence Campus Mare Nostrum 30100 Murcia Spain
| | - Alberto Martinez-Cuezva
- Department of Organic Chemistry, Faculty of Chemistry, University of Murcia, Regional Campus of International Excellence Campus Mare Nostrum 30100 Murcia Spain
| | - Marta Marin-Luna
- Department of Organic Chemistry, Faculty of Chemistry, University of Murcia, Regional Campus of International Excellence Campus Mare Nostrum 30100 Murcia Spain
| | - Belen Batanero
- Department of Organic Chemistry and Inorganic Chemistry, University of Alcala, Institute of Chemical Research AndrésM. del Rio 28805 Alcalá de Henares Madrid Spain
| | - Jose Berna
- Department of Organic Chemistry, Faculty of Chemistry, University of Murcia, Regional Campus of International Excellence Campus Mare Nostrum 30100 Murcia Spain
| |
Collapse
|
3
|
Miyagishi HV, Masai H, Terao J. Bidirectional Molecular Motors by Controlling Threading and Dethreading Pathways of a Linked Rotaxane. Angew Chem Int Ed Engl 2024:e202414307. [PMID: 39205329 DOI: 10.1002/anie.202414307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 08/26/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024]
Abstract
Artificial molecular motors have been presented as models for biological molecular motors. In contrast to the conventional artificial molecular motors that rely on covalent bond rotation, molecular motors with mechanically interlocked molecules (MIMs) have attracted considerable attention owing to their ability to generate significant rotational motion by dynamically shuttling macrocyclic components. The topology of MIM-type rotational molecular motors is currently limited to catenane structures, which require intricate synthetic procedures that typically produce a low synthetic yield. In this study, we develop a novel class of MIM-type molecular motors with a rotaxane-type topology. The switching of the threading/dethreading pathways of the linked rotaxane by protecting/deprotecting the bulky stopper group and changing the solvent polarity enables a net unidirectional rotation of the molecular motor. The threading/dethreading reaction rates were quantitatively evaluated through detailed spectroscopic investigations. Repeated net unidirectional rotation and switching of the direction of rotation were also achieved. Our findings demonstrate that linked rotaxanes can serve as MIM-type molecular motors with reversible rotational direction controlled by threading/dethreading reactions. These motors hold potential as components of molecular machinery.
Collapse
Affiliation(s)
- Hiromichi V Miyagishi
- Department of Basic Science, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1, Komaba, Meguro-ku, Tokyo, 153-8902, Japan
- Department of Chemistry, Faculty of Science, Hokkaido University, Kita-10 Nishi-8 Kita-ku, Sapporo, 060-0810, Japan
| | - Hiroshi Masai
- Department of Basic Science, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1, Komaba, Meguro-ku, Tokyo, 153-8902, Japan
- PRESTO, Japan Science and Technology Agency, 4-1-8, Honcho, Kawaguchi, Saitama, 332-0012, Japan
| | - Jun Terao
- Department of Basic Science, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1, Komaba, Meguro-ku, Tokyo, 153-8902, Japan
| |
Collapse
|
4
|
Zhang S, Zhou R, Zhang N, An Y, Liu Z, Chen XM, Li Q. Mechanical Bond Induced Enhancement and Purification of Pyrene Emission in the Solid State. Chemistry 2024; 30:e202400741. [PMID: 38745544 DOI: 10.1002/chem.202400741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 05/14/2024] [Accepted: 05/14/2024] [Indexed: 05/16/2024]
Abstract
To address key concerns on solid-state pyrene-based luminescent materials, we propose a novel and efficient mechanical bond strategy. This strategy results in a transformation from ACQ to AIE effect and a remarkable enhancement of pyrene emission in the solid state. Moreover, an unusual purification of emission is also achieved. Through computational calculation and experimental characterisation, finally determined by X-ray diffraction analysis, we prove that the excellent emissions result from mechanical bond induced refinement of molecular arrangements, including reduced π-π stacking, well-ordered packing and enhanced structural stability. This work demonstrates the potential of mechanical bond in the field of organic luminescent molecules, providing a new avenue for developing high-performance organic luminescent materials.
Collapse
Affiliation(s)
- Shu Zhang
- Institute of Advanced Materials and School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China
| | - Ru Zhou
- Institute of Advanced Materials and School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China
| | - Ningjin Zhang
- Instrumental Analytical Centre, Shanghai Jiao Tong University, Shanghai, 201100, China
| | - Yi An
- Institute of Advanced Materials and School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China
| | - Zhiyang Liu
- Institute of Advanced Materials and School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China
| | - Xu-Man Chen
- Institute of Advanced Materials and School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China
| | - Quan Li
- Institute of Advanced Materials and School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China
- Materials Science Graduate Program, Kent State University, Kent, OH, 44242, USA
| |
Collapse
|
5
|
Wada K, Nagata Y, Cui L, Ono T, Akine S, Ohtani S, Kato K, Fa S, Ogoshi T. Self-Inclusion Complexation of Electron-Accepting Guest into Electron-Donating Cyclic Host by Photoexcitation. Angew Chem Int Ed Engl 2024; 63:e202404409. [PMID: 38609333 DOI: 10.1002/anie.202404409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/10/2024] [Accepted: 04/12/2024] [Indexed: 04/14/2024]
Abstract
Self-inclusion complexes consisting of host-guest conjugates are one of the unique supramolecular structures because they form in-state and out-state depending on the external stimuli. Despite many reports of the stimuli-responsive self-inclusion complex formation, study of the structural relaxation from out-state to in-state by photoexcitation has been unexplored. Herein, we report that an electron-donating host and an electron-accepting guest conjugate exhibits the structural relaxation from out-state to in-state by photoexcitation. Formation of the in-state in the excited state resulted in exciplex emission along with the locally excited emission from the out-state. Moreover, this structural relaxation by photoexcitation was suppressed not only by temperature, but also by the presence of guest molecules, resulting in changes in the ratio of the dual emission intensities.
Collapse
Affiliation(s)
- Keisuke Wada
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto, 615-8510, Japan
| | - Yuuya Nagata
- WPI Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Kita 21 Nishi 10, Kita-ku, Sapporo, 001-0021, Japan
| | - Luxia Cui
- Department of Chemistry and Biochemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Toshikazu Ono
- Department of Chemistry and Biochemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
- Center for Molecular Systems (CMS), Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Shigehisa Akine
- Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa, 920-1192, Japan
- WPI Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa, 920-1192, Japan
| | - Shunsuke Ohtani
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto, 615-8510, Japan
| | - Kenichi Kato
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto, 615-8510, Japan
| | - Shixin Fa
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto, 615-8510, Japan
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, P. R. China
| | - Tomoki Ogoshi
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto, 615-8510, Japan
- WPI Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa, 920-1192, Japan
| |
Collapse
|
6
|
Ogoshi T, Azuma S, Wada K, Tamura Y, Kato K, Ohtani S, Kakuta T, Yamagishi TA. Exciplex Formation by Complexation of an Electron-Accepting Guest in an Electron-Donating Pillar[5]arene Host Liquid. J Am Chem Soc 2024; 146:9828-9835. [PMID: 38563366 DOI: 10.1021/jacs.3c14582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
We present a novel system, a liquid-state pillar[5]arene decorated with tri(ethylene oxide) chains, that brings electron-donor and electron-acceptor molecules into proximity for efficient exciplex formation. The electron-accepting guests exhibit a blue-purple emission from a localized excited state upon excitation in common solvents. However, directly dissolving the guests in the electron-donating pillar[5]arene liquid (a bulk system) results in visible green emission from the formed exciplexes. In the bulk system, the guest molecules are always surrounded by excess pillar[5]arene molecules, resulting in the formation of mainly inclusion-type exciplexes. In the bulk system, energy migration occurs between the pillar[5]arene molecules. Excitation of the pillar[5]arenes results in a more intense green exciplex emission than that observed upon direct excitation of the guests. In summary, the pillar[5]arene liquid is a novel system for achieving efficient exciplex formation and energy migration that is different from typical solvent and solid systems.
Collapse
Affiliation(s)
- Tomoki Ogoshi
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
- WPI Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kakuma-Machi, Kanazawa 920-1192, Japan
| | - Shogo Azuma
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Keisuke Wada
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Yuko Tamura
- Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-Machi, Kanazawa 920-1192, Japan
| | - Kenichi Kato
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Shunsuke Ohtani
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Takahiro Kakuta
- Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-Machi, Kanazawa 920-1192, Japan
| | - Tada-Aki Yamagishi
- Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-Machi, Kanazawa 920-1192, Japan
| |
Collapse
|
7
|
Bhandari P, Ahmed S, Saha R, Mukherjee PS. Enhancing Fluorescence in Both Solution and Solid States Induced by Imine Cage Formation. Chemistry 2024; 30:e202303101. [PMID: 38116855 DOI: 10.1002/chem.202303101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 11/26/2023] [Accepted: 12/20/2023] [Indexed: 12/21/2023]
Abstract
Developing luminescent materials that exhibit strong emissions in both solution and solid phases is highly desirable and challenging. Herein, we report imine-bond directed formation of a rigid organic cage (TPE-cage) that was synthesized by [2+4] imine condensation of a TPE-cored tetra-aldehyde (TPE-TA) with a clip-like diamine (XA) to illustrate confinement-induced fluorescence enhancement. Compared to the non-emissive TPE-TA (ϕF =0.26 %) in the dichloromethane (DCM) solution, the TPE-cage achieved a remarkable (~520-fold) emission enhancement (ϕF =70.38 %). In contrast, a monomeric tetra-imine model compound (TPE-model) showed only a minor enhancement (ϕF =0.56 %) in emission compared to the parent tetra-aldehyde TPE-TA. The emission of TPE-cage was further enhanced by ~1.5-fold (ϕF =80.96 %) in the aggregated state owing to aggregation-induced emission enhancement (AIEE). This approach establishes the potential for synthesizing luminescent materials with high emission in both solution and solid-state by employing a single-step imine condensation reaction.
Collapse
Affiliation(s)
- Pallab Bhandari
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore, 560012, India
| | - Shakil Ahmed
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore, 560012, India
| | - Rajib Saha
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore, 560012, India
| | - Partha Sarathi Mukherjee
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore, 560012, India
| |
Collapse
|
8
|
de la Hoz Tomás M, Yamaguchi M, Cohen B, Hisaki I, Douhal A. Deciphering the ultrafast dynamics of a new tetraphenylethylene derivative in solutions: charge separation, phenyl ring rotation and CC bond twisting. Phys Chem Chem Phys 2023; 25:1755-1767. [PMID: 36594826 DOI: 10.1039/d2cp05220b] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Tetraphenylethylene (TPE) derivatives are one of the fundamental units for developing aggregation induced emission (AIE) scaffolds. However, the underlying mechanisms implicated in the relaxation of the excited TPE remain a topic of ongoing discussion, while the effect of bulky substituents on its photobehaviour is still under scrutiny. Here, we report a detailed study of the photophysical properties of a new symmetrical and bulky TPE derivative with terphenyl groups (TTECOOBu) in solvents of different polarities and viscosities. Using femto- to nanosecond (fs-ns) time-resolved absorption and emission techniques, we elucidated the role of the phenyl group rotations and core ethylene bond twisting in its behaviour. We demonstrate that TTECOOBu in DCM solutions undergoes a 600 fs charge separation along the ethylene bond leading to a resonance structure with a lifetime of ∼1 ns. The latter relaxes via two consecutive events: a twisting of the ethylene bond (∼ 9 ps) and a rotation of the phenyl rings (∼ 30 ps) leading to conformationally-relaxed species with a largely Stokes-shifted emission (∼ 12 500 cm-1). The formation of the red-emitting species clearly depends on the solvent viscosity and rigidity of the medium. Contrary to the photobehavior in the highly viscous triacetin or rigid polymer matrix of PMMA, a reversible mechanism was observed in DCM and DMF solutions. These results provide new findings on the ultrafast mechanisms of excited TPE derivatives and should help in the development of new molecular rotors with interesting AIE properties for photonic applications.
Collapse
Affiliation(s)
- Mario de la Hoz Tomás
- Departamento de Química Física, Facultad de Ciencias Ambientales y Bioquímica, and INAMOL, Universidad de Castilla-La Mancha, Avenida Carlos III, S/N, 45071 Toledo, Spain.
| | - Mao Yamaguchi
- Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka 560-8531, Japan.
| | - Boiko Cohen
- Departamento de Química Física, Facultad de Ciencias Ambientales y Bioquímica, and INAMOL, Universidad de Castilla-La Mancha, Avenida Carlos III, S/N, 45071 Toledo, Spain.
| | - Ichiro Hisaki
- Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka 560-8531, Japan.
| | - Abderrazzak Douhal
- Departamento de Química Física, Facultad de Ciencias Ambientales y Bioquímica, and INAMOL, Universidad de Castilla-La Mancha, Avenida Carlos III, S/N, 45071 Toledo, Spain.
| |
Collapse
|
9
|
Shimomura Y, Igawa K, Sasaki S, Sakakibara N, Goseki R, Konishi G. Flexible Alkylene Bridges as a Tool To Engineer Crystal Distyrylbenzene Structures Enabling Highly Fluorescent Monomeric Emission. Chemistry 2022; 28:e202201884. [PMID: 35817755 PMCID: PMC9544799 DOI: 10.1002/chem.202201884] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Indexed: 11/10/2022]
Affiliation(s)
- Yoshimichi Shimomura
- Department of Chemical Science and Engineering Tokyo Institute of Technology 2-12-1 O-okayama, Meguro-ku 152-8552 Tokyo Japan
| | - Kazunobu Igawa
- Institute for Materials Chemistry and Engineering Kyushu University 6-1 Kasuga-koen, Kasuga 816-8580 Fukuoka Japan
| | - Shunsuke Sasaki
- Université de Nantes CNRS Institut des Matériaux Jean Rouxel IMN F-44000 Nantes France
| | - Noritaka Sakakibara
- Department of Chemistry Tokyo Institute of Technology 2-12-1 O-okayama, Meguro-ku 152-8552 Tokyo Japan
| | - Raita Goseki
- Department of Applied Chemistry Kogakuin University Nakano-machi, Hachioji-shi 192-0015 Tokyo Japan
| | - Gen‐ichi Konishi
- Department of Chemical Science and Engineering Tokyo Institute of Technology 2-12-1 O-okayama, Meguro-ku 152-8552 Tokyo Japan
- PRESTO “Element Strategy” Japan Science and Technology Agency (JST) Kawaguchi Saitama 332-0012 Japan
| |
Collapse
|
10
|
Russell GM, Masai H, Terao J. Insulation of a coumarin derivative with [1]rotaxane to control solvation-induced effects in excited-state dynamics for enhanced luminescence. Phys Chem Chem Phys 2022; 24:15195-15200. [PMID: 35703560 DOI: 10.1039/d2cp02221d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A coumarin derivative bearing a [1]rotaxane structure with permethylated α-cyclodextrins suppressed unwanted solvation-induced effects and increased luminescent quantum yields in medium- and high-polarity solvents. The non-radiative decay was suppressed by the twist in the π-conjugated system and the radiative decay was enhanced by the suppression of the polarity-induced structural changes.
Collapse
Affiliation(s)
- Go M Russell
- Department of Basic Science, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1, Komaba, Meguro-ku, Tokyo, 153-8902, Japan.
| | - Hiroshi Masai
- Department of Basic Science, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1, Komaba, Meguro-ku, Tokyo, 153-8902, Japan. .,PRESTO, Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, Saitama, 332-0012, Japan
| | - Jun Terao
- Department of Basic Science, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1, Komaba, Meguro-ku, Tokyo, 153-8902, Japan.
| |
Collapse
|