1
|
Zhang Y, Yu Y, Liu X, Miao J, Han Y, Liu J, Wang L. An n-Type All-Fused-Ring Molecule with Photoresponse to 1000 nm for Highly Sensitive Near-Infrared Photodetector. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2211714. [PMID: 36842062 DOI: 10.1002/adma.202211714] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 02/04/2023] [Indexed: 05/19/2023]
Abstract
Most of all-fused-ring π-conjugated molecules have wide or medium bandgap and show photo response in the visible range. In this work, an all-fused-ring n-type molecule, which exhibits an ultrasmall optical bandgap of 1.22 eV and strong near-infrared (NIR) absorption with an onset absorption wavelength of 1013 nm is reported. The molecule consists of 14 aromatic rings and has electron donor-acceptor characteristics. It exhibits excellent n-type properties with low-lying HOMO/LUMO energy levels of -5.48 eV/-3.95 eV and high electron mobility of 7.0 × 10-4 cm2 V-1 s-1 . Most importantly, its thin film exhibits a low trap density of 5.55 × 1016 cm-3 because of the fixed molecular conformation and consequently low conformation disorder. As a result, organic photodetector (OPD) based on the compound exhibits a remarkably low dark current density (Jd ) of 2.01 × 10-10 A cm-2 at 0 V. The device shows a shot-noise-limited specific detectivity (Dsh *) of exceeding 1013 Jones at 400-1000 nm wavelength region with a peak specific detectivity of 4.65 × 1013 Jones at 880 nm. This performance is among the best reported for self-powered NIR OPDs.
Collapse
Affiliation(s)
- Yingze Zhang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Yingjian Yu
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Xinyu Liu
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Junhui Miao
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
| | - Yanchun Han
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Jun Liu
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Lixiang Wang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, P. R. China
| |
Collapse
|
2
|
Lin L, Wang C, Deng Y, Geng Y. Isomerically Pure Oxindole-Terminated Quinoids for n-Type Organic Thin-Film Transistors Enabled by the Chlorination of Quinoidal Core. Chemistry 2023; 29:e202203336. [PMID: 36456528 DOI: 10.1002/chem.202203336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 11/30/2022] [Accepted: 12/01/2022] [Indexed: 12/03/2022]
Abstract
Quinoidal compounds have great potential utility as high-performance organic semiconducting materials because of their rigid planar structures and extended π-conjugation. However, the existence of E and Z isomers adversely affects the charge-transport properties of quinoidal compounds. In this study, three isomerically pure oxindole-terminated quinoids were developed by introducing chlorine atoms in the quinoidal core. The synthesized quinoids were confirmed to have a Z,Z configuration by means of 1 H NMR spectroscopy, density functional theory calculations, and single-crystal X-ray analysis. Importantly, the strategy of chlorination allowed to maintain low-lying frontier molecular orbital energy levels and ensure favorable intermolecular packing. Consequently, all three quinoidal compounds showed n-type transport characteristics in organic thin-film transistors, with electron mobilities up to 0.35 cm2 V-1 s-1 , which is the highest value reported to date for oxindole-terminated quinoids. Our study can provide new guidelines for the design of isomerically pure quinoids with high electron mobilities.
Collapse
Affiliation(s)
- Linlin Lin
- School of Materials Science and Engineering and Tianjin Key Laboratory of Molecular Optoelectronic Science, and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, 300072, P. R. China
| | - Cheng Wang
- School of Materials Science and Engineering and Tianjin Key Laboratory of Molecular Optoelectronic Science, and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, 300072, P. R. China
| | - Yunfeng Deng
- School of Materials Science and Engineering and Tianjin Key Laboratory of Molecular Optoelectronic Science, and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, 300072, P. R. China.,Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University Binhai New City, Fuzhou, 350207, China
| | - Yanhou Geng
- School of Materials Science and Engineering and Tianjin Key Laboratory of Molecular Optoelectronic Science, and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, 300072, P. R. China.,Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University Binhai New City, Fuzhou, 350207, China
| |
Collapse
|
3
|
Du T, Liu Y, Wang C, Deng Y, Geng Y. n-Type Conjugated Polymers Based on an Indandione-Terminated Quinoidal Building Block. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c01029] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Tian Du
- School of Materials Science and Engineering and Tianjin Key Laboratory of Molecular Optoelectronic Science, Tianjin University, Tianjin 300072, China
| | - Yingying Liu
- School of Materials Science and Engineering and Tianjin Key Laboratory of Molecular Optoelectronic Science, Tianjin University, Tianjin 300072, China
| | - Cheng Wang
- School of Materials Science and Engineering and Tianjin Key Laboratory of Molecular Optoelectronic Science, Tianjin University, Tianjin 300072, China
| | - Yunfeng Deng
- School of Materials Science and Engineering and Tianjin Key Laboratory of Molecular Optoelectronic Science, Tianjin University, Tianjin 300072, China
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Fuzhou 350207, China
| | - Yanhou Geng
- School of Materials Science and Engineering and Tianjin Key Laboratory of Molecular Optoelectronic Science, Tianjin University, Tianjin 300072, China
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Fuzhou 350207, China
| |
Collapse
|