1
|
Stogniy MY, Anufriev SA, Bogdanova EV, Gorodetskaya NA, Anisimov AA, Suponitsky KY, Grishin ID, Sivaev IB. Charge-compensated nido-carborane derivatives in the synthesis of iron(II) bis(dicarbollide) complexes. Dalton Trans 2024. [PMID: 38264799 DOI: 10.1039/d3dt03549b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2024]
Abstract
A series of stable iron(II) bis(dicarbollide) derivatives [8,8'-(RNHC(Et)HN)2-3,3'-Fe(1,2-C2B9H10)2] (R = Pr, R = Ph, (CH2)2OH, (CH2)3OH, (CH2)2NMe2) was prepared starting from FeCl2 or [FeCl2(dppe)] and the corresponding nido-carboranyl amidines [10-RNHC(Et)HN-7,8-C2B9H11]. In a similar way, the reactions of the oxonium derivatives of nido-carborane with FeCl2 in tetrahydrofuran in the presence of t-BuOK lead to the corresponding stable oxonium derivatives iron(II) bis(dicarbollide) [8,8'-(RR'O)2-3,3'-Fe(1,2-C2B9H10)2] (RR' = (CH2)4, (CH2)2O(CH2)2, (CH2)5; R = R' = Et), which can be alternatively prepared by the reaction of the parent iron(II) bis(dicarbollide) with tetrahydrofuran or 1,4-dioxane in the presence of Me2SO4. The cyclic voltammetry studies of the synthesized iron(II) bis(dicarbollide) derivatives revealed that the introduction of amidinium and oxonium substituents leads to a significant increase in the Fe2+/Fe3+ redox potential relative to the parent iron(II) bis(dicarbollide). The redox potentials of the oxonium derivatives are close to the redox potential of ferrocene and somewhat lower than redox potentials of sulfonium and phosphonium derivatives of iron(II) bis(dicarbollide).
Collapse
Affiliation(s)
- Marina Yu Stogniy
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Moscow, Russia.
- M.V. Lomonosov Institute of Fine Chemical Technology, MIREA - Russian Technological University, Moscow, Russia
| | - Sergey A Anufriev
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Moscow, Russia.
| | - Ekaterina V Bogdanova
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Moscow, Russia.
- M.V. Lomonosov Institute of Fine Chemical Technology, MIREA - Russian Technological University, Moscow, Russia
| | - Nadezhda A Gorodetskaya
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Moscow, Russia.
- M.V. Lomonosov Institute of Fine Chemical Technology, MIREA - Russian Technological University, Moscow, Russia
| | - Alexei A Anisimov
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Moscow, Russia.
| | - Kyrill Yu Suponitsky
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Moscow, Russia.
- G.V. Plekhanov Russian University of Economics, Moscow, Russia
| | - Ivan D Grishin
- Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia
| | - Igor B Sivaev
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Moscow, Russia.
- Faculty of Chemistry, National Research University Higher School of Economics (HSE University), Moscow, Russia
| |
Collapse
|
2
|
Nees S, Wellnitz T, Dankert F, Härterich M, Dotzauer S, Feldt M, Braunschweig H, Hering-Junghans C. On the Reactivity of Phosphaalumenes towards C-C Multiple Bonds. Angew Chem Int Ed Engl 2023; 62:e202215838. [PMID: 36516342 DOI: 10.1002/anie.202215838] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 12/11/2022] [Accepted: 12/14/2022] [Indexed: 12/15/2022]
Abstract
Heterocycles containing group 13 and 15 elements such as borazines are an integral part of organic, biomedical and materials chemistry. Surprisingly, heterocycles containing P and Al are rare. We have now utilized phosphaalumenes in reactions with alkynes, alkenes and conjugated double bond systems. With sterically demanding alkynes 1,2-phosphaalumetes were afforded, whereas the reaction with HCCH or HCCSiMe3 gave 1,4-phosphaaluminabarrelenes. Using styrene saturated 1,2-phosphaalumates were formed, which reacted further with additional styrene to give different regio-isomers of 1,4-aluminaphosphorinanes. Using ethylene, a 1,4-aluminaphosphorinane is obtained, while with 1,3-butadiene a bicyclic system containing an aluminacyclopentane and a phosphirane unit was synthesized. The experimental work is supported by theoretical studies to shed light on the mechanism governing the formation of these heterocycles.
Collapse
Affiliation(s)
- Samuel Nees
- Institut für Anorganische Chemie, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074, Würzburg, Germany.,Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Tim Wellnitz
- Institut für Anorganische Chemie, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074, Würzburg, Germany.,Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074, Würzburg, Germany.,Leibniz-Institut für Katalyse e.V. (LIKAT), Albert-Einstein-Straße 3a, 18059, Rostock, Germany
| | - Fabian Dankert
- Leibniz-Institut für Katalyse e.V. (LIKAT), Albert-Einstein-Straße 3a, 18059, Rostock, Germany
| | - Marcel Härterich
- Institut für Anorganische Chemie, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074, Würzburg, Germany.,Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Simon Dotzauer
- Institut für Anorganische Chemie, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074, Würzburg, Germany.,Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Milica Feldt
- Leibniz-Institut für Katalyse e.V. (LIKAT), Albert-Einstein-Straße 3a, 18059, Rostock, Germany
| | - Holger Braunschweig
- Institut für Anorganische Chemie, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074, Würzburg, Germany.,Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
| | | |
Collapse
|
3
|
Dankert F, Hering-Junghans C. Heavier group 13/15 multiple bond systems: synthesis, structure and chemical bond activation. Chem Commun (Camb) 2022; 58:1242-1262. [PMID: 35014640 DOI: 10.1039/d1cc06518a] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Heavier group 13/15 multiple bonds have been under investigation since the late 80s and to date, several examples have been published, which shows the obsoleteness of the so-called double bond rule. Especially in the last few years, more and more group 13/15 multiple bonds became synthetically feasible and their application in terms of small molecule activation has been demonstrated. Our group has recently shown that the combination of the pnictinidene precursor DipTer-Pn(PMe3) (Pn = P, As) in combination with Al(I) synthons afforded the first examples of phospha- and arsaalumenes as isolable and thermally robust compounds. This feature article is intended to show the recent developments in the field, to outline early synthetic approaches and to discuss strategies to unlock the synthetic potential of these elusive chemical bonds.
Collapse
Affiliation(s)
- F Dankert
- Leibniz Institut für Katalyse e.V. (LIKAT), Albert-Einstein-Str. 29A, 18059 Rostock, Germany.
| | - C Hering-Junghans
- Leibniz Institut für Katalyse e.V. (LIKAT), Albert-Einstein-Str. 29A, 18059 Rostock, Germany.
| |
Collapse
|