1
|
Parvatkar PT, Diagne K, Zhao Y, Manetsch R. Indoloquinoline Alkaloids as Antimalarials: Advances, Challenges, and Opportunities. ChemMedChem 2024; 19:e202400254. [PMID: 38840271 DOI: 10.1002/cmdc.202400254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/30/2024] [Accepted: 06/05/2024] [Indexed: 06/07/2024]
Abstract
Malaria infections affect almost half of the world's population, with over 200 million cases reported annually. Cryptolepis sanguinolenta, a plant native to West Africa, has long been used across various regions of Africa for malaria treatment. Chemical analysis has revealed that the plant is abundant in indoloquinolines, which have been shown to possess antimalarial properties. Cryptolepine, neocryptolepine, and isocryptolepine are well-studied indoloquinoline alkaloids known for their potent antimalarial activity. However, their structural rigidity and associated cellular toxicity are major drawbacks for preclinical development. This review focuses on the potential of indoloquinoline alkaloids (cryptolepine, neocryptolepine, and isocryptolepine) as scaffolds in drug discovery. The article delves into their antimalarial effects in vitro and in vivo, as well as their proposed mechanisms of action and structure-activity relationship studies. Several studies aim to improve these leads by reducing cytotoxicity while preserving or enhancing antimalarial activity and gaining insights into their mechanisms of action. These investigations highlight the potential of indoloquinolines as a scaffold for developing new antimalarial drugs.
Collapse
Affiliation(s)
- Prakash T Parvatkar
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA 02115, USA
| | - Khaly Diagne
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA 02115, USA
| | - Yingzhao Zhao
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA 02115, USA
| | - Roman Manetsch
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA 02115, USA
- Department of Pharmaceutical Sciences, Northeastern University, Boston, MA 02115, USA
- Center for Drug Discovery, Northeastern University, Boston, MA 02115, USA
- Barnett Institute of Chemical and Biological Analysis, Northeastern University, Boston, MA 02115, USA
| |
Collapse
|
2
|
Nakata M, Kosaka N, Kawauchi K, Miyoshi D. Quantitative Effects of the Loop Region on Topology, Thermodynamics, and Cation Binding of DNA G-quadruplexes. ACS OMEGA 2024; 9:35028-35036. [PMID: 39157113 PMCID: PMC11325513 DOI: 10.1021/acsomega.4c05008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 07/16/2024] [Accepted: 07/17/2024] [Indexed: 08/20/2024]
Abstract
The thermal stability of G-quadruplexes is important for their biological roles. G-quadruplexes are stable in the presence of cations such as K+ and Na+ because these cations coordinate in the G-quartet of four guanine bases. It is well known that the number of G-quartets and the configuration of the guanine bases affect the binding affinity of the cation. Recently, structures formed in the loop regions connecting the guanine stretches have attracted significant attention, because the loop region affects G-quadruplex properties, such as topology, thermal stability, and interactions with proteins and small molecules. Considering these effects, the loop region can also affect the binding affinity of the cations. Here, we designed a series of G-quadruplex-forming DNA sequences that contain a hairpin in a loop region and investigated the effects of the sequence and structure of the loop region on the cation binding affinity as well as the thermal stability of the G-quadruplex as a whole. First, structural analysis of the DNA sequences showed that the hairpin at the loop plays a key role in determining G4 topology (strand orientation). Second, in the case of the G-quadruplexes with the hairpin-forming loop region, it was found that a longer loop length led to a higher thermodynamic stability of the G-quadruplex as well as higher cation binding affinity. In contrast, an unstructured loop region did not lead to such effects. Interestingly, the cation binding affinity was correlated to the thermodynamic stability of the hairpin structure at the loop region. It was quantitatively demonstrated that the stable loop region stabilized the whole G-quadruplex structure, which induced higher cation binding affinity. These systematic and quantitative results showed that the loop region is one of the determinants of cation binding and expanded the possibilities of drug development targeting G4s by stabilizing the loop region.
Collapse
Affiliation(s)
- Minori Nakata
- Faculty of Frontiers of Innovative Research in Science and Technology (FIRST), Konan University, 7-1-20, Minatojima-minamimachi, Chuo-ku, Kobe 650-0047, Japan
| | - Naoki Kosaka
- Faculty of Frontiers of Innovative Research in Science and Technology (FIRST), Konan University, 7-1-20, Minatojima-minamimachi, Chuo-ku, Kobe 650-0047, Japan
| | - Keiko Kawauchi
- Faculty of Frontiers of Innovative Research in Science and Technology (FIRST), Konan University, 7-1-20, Minatojima-minamimachi, Chuo-ku, Kobe 650-0047, Japan
| | - Daisuke Miyoshi
- Faculty of Frontiers of Innovative Research in Science and Technology (FIRST), Konan University, 7-1-20, Minatojima-minamimachi, Chuo-ku, Kobe 650-0047, Japan
| |
Collapse
|
3
|
Neidle S. A Phenotypic Approach to the Discovery of Potent G-Quadruplex Targeted Drugs. Molecules 2024; 29:3653. [PMID: 39125057 PMCID: PMC11314571 DOI: 10.3390/molecules29153653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 07/29/2024] [Accepted: 07/30/2024] [Indexed: 08/12/2024] Open
Abstract
G-quadruplex (G4) sequences, which can fold into higher-order G4 structures, are abundant in the human genome and are over-represented in the promoter regions of many genes involved in human cancer initiation, progression, and metastasis. They are plausible targets for G4-binding small molecules, which would, in the case of promoter G4s, result in the transcriptional downregulation of these genes. However, structural information is currently available on only a very small number of G4s and their ligand complexes. This limitation, coupled with the currently restricted information on the G4-containing genes involved in most complex human cancers, has led to the development of a phenotypic-led approach to G4 ligand drug discovery. This approach was illustrated by the discovery of several generations of tri- and tetra-substituted naphthalene diimide (ND) ligands that were found to show potent growth inhibition in pancreatic cancer cell lines and are active in in vivo models for this hard-to-treat disease. The cycles of discovery have culminated in a highly potent tetra-substituted ND derivative, QN-302, which is currently being evaluated in a Phase 1 clinical trial. The major genes whose expression has been down-regulated by QN-302 are presented here: all contain G4 propensity and have been found to be up-regulated in human pancreatic cancer. Some of these genes are also upregulated in other human cancers, supporting the hypothesis that QN-302 is a pan-G4 drug of potential utility beyond pancreatic cancer.
Collapse
Affiliation(s)
- Stephen Neidle
- The School of Pharmacy, University College London, London WC1N 1AX, UK
| |
Collapse
|
4
|
Mazzini S, Borgonovo G, Princiotto S, Artali R, Musso L, Aviñó A, Eritja R, Gargallo R, Dallavalle S. Quadruplex-duplex junction in LTR-III: A molecular insight into the complexes with BMH-21, namitecan and doxorubicin. PLoS One 2024; 19:e0306239. [PMID: 39046961 PMCID: PMC11268700 DOI: 10.1371/journal.pone.0306239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 06/13/2024] [Indexed: 07/27/2024] Open
Abstract
Quadruplex-Duplex (Q-D) junctions are unique structural motifs garnering increasing interest as drug targets, due to their frequent occurrence in genomic sequences. The viral HIV LTR-III sequence was chosen as a Q-D junction model to study the affinity of the selected compounds BMH-21, namitecan (ST-1968), and doxorubicin (DOXO), all containing a planar polycyclic aromatic moiety, linked to either one short aminoalkyl or an aminoglycosyl group. A multidisciplinary approach that combines NMR spectroscopy, molecular modelling, circular dichroism (CD) and fluorescence spectroscopy was employed. The studied ligands induced moderate but clear stabilization to the Q-D junction by interacting with the interfacial tetrad. DOXO was found to be the best Q-D junction binder. Interestingly, the removal of the aminoglycosyl group significantly changed the pattern of the interactions, indicating that highly polar substituents have a stronger affinity with the exposed regions of the Q-D junction, particularly at the level of the interfacial tetrad.
Collapse
Affiliation(s)
- Stefania Mazzini
- Department of Food, Environmental and Nutritional Sciences (DEFENS), University of Milan, Milan, Italy
| | - Gigliola Borgonovo
- Department of Food, Environmental and Nutritional Sciences (DEFENS), University of Milan, Milan, Italy
| | - Salvatore Princiotto
- Department of Food, Environmental and Nutritional Sciences (DEFENS), University of Milan, Milan, Italy
| | - Roberto Artali
- Scientia Advice di Roberto Artali, Cesano Maderno (MB), Italy
| | - Loana Musso
- Department of Food, Environmental and Nutritional Sciences (DEFENS), University of Milan, Milan, Italy
| | - Anna Aviñó
- Institute for Advanced Chemistry of Catalonia (IQAC), CSIC, Networking Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), ISCIII, Barcelona, Spain
| | - Ramon Eritja
- Institute for Advanced Chemistry of Catalonia (IQAC), CSIC, Networking Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), ISCIII, Barcelona, Spain
| | - Raimundo Gargallo
- Department of Chemical Engineering and Analytical Chemistry, University of Barcelona, Barcelona, Spain
| | - Sabrina Dallavalle
- Department of Food, Environmental and Nutritional Sciences (DEFENS), University of Milan, Milan, Italy
- National Institute of Fundamental Studies, Kandy, Sri Lanka
| |
Collapse
|
5
|
Vianney YM, Dierks D, Weisz K. Structural Differences at Quadruplex-Duplex Interfaces Enable Ligand-Induced Topological Transitions. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2309891. [PMID: 38477454 PMCID: PMC11200018 DOI: 10.1002/advs.202309891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 02/13/2024] [Indexed: 03/14/2024]
Abstract
Quadruplex-duplex (QD) junctions, which represent unique structural motifs of both biological and technological significance, have been shown to constitute high-affinity binding sites for various ligands. A QD hybrid construct based on a human telomeric sequence, which harbors a duplex stem-loop in place of a short lateral loop, is structurally characterized by NMR. It folds into two major species with a (3+1) hybrid and a chair-type (2+2) antiparallel quadruplex domain coexisting in a K+ buffer solution. The antiparallel species is stabilized by an unusual capping structure involving a thymine and protonated adenine base AH+ of the lateral loop facing the hairpin duplex to form a T·AH+·G·C quartet with the interfacial G·C base pair at neutral pH. Addition and binding of Phen-DC3 to the QD hybrid mixture by its partial intercalation at corresponding QD junctions leads to a topological transition with exclusive formation of the (3+1) hybrid fold. In agreement with the available experimental data, such an unprecedented discrimination of QD junctions by a ligand can be rationalized following an induced fit mechanism.
Collapse
Affiliation(s)
- Yoanes Maria Vianney
- Institut für BiochemieUniversität GreifswaldFelix‐Hausdorff‐Str. 4D‐17489GreifswaldGermany
| | - Dorothea Dierks
- Institut für BiochemieUniversität GreifswaldFelix‐Hausdorff‐Str. 4D‐17489GreifswaldGermany
| | - Klaus Weisz
- Institut für BiochemieUniversität GreifswaldFelix‐Hausdorff‐Str. 4D‐17489GreifswaldGermany
| |
Collapse
|
6
|
Vianney YM, Schröder N, Jana J, Chojetzki G, Weisz K. Showcasing Different G-Quadruplex Folds of a G-Rich Sequence: Between Rule-Based Prediction and Butterfly Effect. J Am Chem Soc 2023; 145:22194-22205. [PMID: 37751488 DOI: 10.1021/jacs.3c08336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2023]
Abstract
In better understanding the interactions of G-quadruplexes in a cellular or noncellular environment, a reliable sequence-based prediction of their three-dimensional fold would be extremely useful, yet is often limited by their remarkable structural diversity. A G-rich sequence related to a promoter sequence of the PDGFR-β nuclease hypersensitivity element (NHE) comprises a G3-G3-G2-G4-G3 pattern of five G-runs with two to four G residues. Although the predominant formation of three-layered canonical G-quadruplexes with uninterrupted G-columns can be expected, minimal base substitutions in a non-G-tract domain were shown to guide folding into either a basket-type antiparallel quadruplex, a parallel-stranded quadruplex with an interrupted G-column, a quadruplex with a V-shaped loop, or a (3+1) hybrid quadruplex. A 3D NMR structure for each of the different folds was determined. Supported by thermodynamic profiling on additional sequence variants, formed topologies were rationalized by the identification and assessment of specific critical interactions of loop and overhang residues, giving valuable insights into their contribution to favor a particular conformer. The variability of such tertiary interactions, together with only small differences in quadruplex free energies, emphasizes current limits for a reliable sequence-dependent prediction of favored topologies from sequences with multiple irregularly positioned G-tracts.
Collapse
Affiliation(s)
- Yoanes Maria Vianney
- Institute of Biochemistry, Universität Greifswald, Felix-Hausdorff Str. 4, D-17489 Greifswald, Germany
| | - Nina Schröder
- Institute of Biochemistry, Universität Greifswald, Felix-Hausdorff Str. 4, D-17489 Greifswald, Germany
| | - Jagannath Jana
- Institute of Biochemistry, Universität Greifswald, Felix-Hausdorff Str. 4, D-17489 Greifswald, Germany
| | - Gregor Chojetzki
- Institute of Biochemistry, Universität Greifswald, Felix-Hausdorff Str. 4, D-17489 Greifswald, Germany
| | - Klaus Weisz
- Institute of Biochemistry, Universität Greifswald, Felix-Hausdorff Str. 4, D-17489 Greifswald, Germany
| |
Collapse
|
7
|
Vianney YM, Weisz K. High-affinity binding at quadruplex-duplex junctions: rather the rule than the exception. Nucleic Acids Res 2022; 50:11948-11964. [PMID: 36416262 PMCID: PMC9723630 DOI: 10.1093/nar/gkac1088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/19/2022] [Accepted: 10/26/2022] [Indexed: 11/24/2022] Open
Abstract
Quadruplex-duplex (Q-D) junctions constitute unique structural motifs in genomic sequences. Through comprehensive calorimetric as well as high-resolution NMR structural studies, Q-D junctions with a hairpin-type snapback loop coaxially stacked onto an outer G-tetrad were identified to be most effective binding sites for various polycyclic quadruplex ligands. The Q-D interface is readily recognized by intercalation of the ligand aromatic core structure between G-tetrad and the neighboring base pair. Based on the thermodynamic and structural data, guidelines for the design of ligands with enhanced selectivity towards a Q-D interface emerge. Whereas intercalation at Q-D junctions mostly outcompete stacking at the quadruplex free outer tetrad or intercalation between duplex base pairs to varying degrees, ligand side chains considerably contribute to the selectivity for a Q-D target over other binding sites. In contrast to common perceptions, an appended side chain that additionally interacts within the duplex minor groove may confer only poor selectivity. Rather, the Q-D selectivity is suggested to benefit from an extension of the side chain towards the exposed part of the G-tetrad at the junction. The presented results will support the design of selective high-affinity binding ligands for targeting Q-D interfaces in medicinal but also technological applications.
Collapse
Affiliation(s)
- Yoanes Maria Vianney
- Institute of Biochemistry, Universität Greifswald, Felix-Hausdorff-Str. 4, D-17489 Greifswald, Germany
| | - Klaus Weisz
- To whom correspondence should be addressed. Tel: +49 3834 420 4426; Fax: +49 3834 420 4427;
| |
Collapse
|
8
|
Kumar S, Pany SPP, Sudhakar S, Singh SB, Todankar CS, Pradeepkumar PI. Targeting Parallel Topology of G-Quadruplex Structures by Indole- Fused Quindoline Scaffolds. Biochemistry 2022; 61:2546-2559. [DOI: 10.1021/acs.biochem.2c00373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Satendra Kumar
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai400076, India
| | | | - Sruthi Sudhakar
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai400076, India
| | - Sushma B. Singh
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai400076, India
| | - Chaitra S. Todankar
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai400076, India
| | - P. I. Pradeepkumar
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai400076, India
| |
Collapse
|
9
|
Biver T. Discriminating between Parallel, Anti-Parallel and Hybrid G-Quadruplexes: Mechanistic Details on Their Binding to Small Molecules. Molecules 2022; 27:molecules27134165. [PMID: 35807410 PMCID: PMC9268745 DOI: 10.3390/molecules27134165] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/22/2022] [Accepted: 06/27/2022] [Indexed: 12/04/2022] Open
Abstract
G-quadruplexes (G4) are now extensively recognised as a peculiar non-canonical DNA geometry that plays a prime importance role in processes of biological relevance whose number is increasing continuously. The same is true for the less-studied RNA G4 counterpart. G4s are stable structures; however, their geometrical parameters may be finely tuned not only by the presence of particular sequences of nucleotides but also by the salt content of the medium or by a small molecule that may act as a peculiar topology inducer. As far as the interest in G4s increases and our knowledge of these species deepens, researchers do not only verify the G4s binding by small molecules and the subsequent G4 stabilisation. The most innovative studies now aim to elucidate the mechanistic details of the interaction and the ability of a target species (drug) to bind only to a peculiar G4 geometry. In this focused review, we survey the advances in the studies of the binding of small molecules of medical interest to G4s, with particular attention to the ability of these species to bind differently (intercalation, lateral binding or sitting atop) to different G4 topologies (parallel, anti-parallel or hybrid structures). Some species, given the very high affinity with some peculiar G4 topology, can first bind to a less favourable geometry and then induce its conversion. This aspect is also considered.
Collapse
Affiliation(s)
- Tarita Biver
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via G. Moruzzi 13, 56124 Pisa, Italy
| |
Collapse
|
10
|
Mendes E, Bahls B, Aljnadi IM, Paulo A. Indoloquinolines as scaffolds for the design of potent G-quadruplex ligands. Bioorg Med Chem Lett 2022; 72:128862. [PMID: 35716866 DOI: 10.1016/j.bmcl.2022.128862] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 06/09/2022] [Accepted: 06/13/2022] [Indexed: 11/19/2022]
Abstract
Indoloquinolines are natural alkaloids with known affinity to DNA and antiproliferative activity against bacteria, parasites, and cancer cells. Due to their non-chiral skeleton, their total synthesis is easy to achieve and throughout the years, many derivatives have been studied for their potential as drugs. Herein we review the indoloquinolines and bioisosters that have been designed, synthesised, and evaluated for their selective binding to G-quadruplex nucleic acid structures, as well as the reported effects in cancer cells. The data collected so far strongly suggest that indoloquinolines are good scaffolds for the development of drugs and probes targeting the G-quadruplex structures, but they also show that this scaffold is still underexplored.
Collapse
Affiliation(s)
- Eduarda Mendes
- Faculty of Pharmacy, Research Institute for Medicines (iMed.ULisboa), Universidade de Lisboa, Av. Prof. Gama Pinto, Lisbon 1649-003, Portugal
| | - Bárbara Bahls
- Faculty of Pharmacy, Research Institute for Medicines (iMed.ULisboa), Universidade de Lisboa, Av. Prof. Gama Pinto, Lisbon 1649-003, Portugal
| | - Israa M Aljnadi
- Faculty of Pharmacy, Research Institute for Medicines (iMed.ULisboa), Universidade de Lisboa, Av. Prof. Gama Pinto, Lisbon 1649-003, Portugal
| | - Alexandra Paulo
- Faculty of Pharmacy, Research Institute for Medicines (iMed.ULisboa), Universidade de Lisboa, Av. Prof. Gama Pinto, Lisbon 1649-003, Portugal.
| |
Collapse
|
11
|
Xu G, Zhao J, Yu H, Wang C, Huang Y, Zhao Q, Zhou X, Li C, Liu M. Structural Insights into the Mechanism of High-Affinity Binding of Ochratoxin A by a DNA Aptamer. J Am Chem Soc 2022; 144:7731-7740. [PMID: 35442665 DOI: 10.1021/jacs.2c00478] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
A 36-mer guanine (G)-rich DNA aptamer (OBA36) is able to distinguish one atomic difference between ochratoxin analogues A (OTA) and B (OTB), showing prominent recognition specificity and affinity among hundreds of aptamers for small molecules. Why OBA36 has >100-fold higher binding affinity to OTA than OTB remains a long-standing question due to the lack of high-resolution structure. Here we report the solution NMR structure of the aptamer-OTA complex. It was found that OTA binding induces the aptamer to fold into a well-defined unique duplex-quadruplex structural scaffold stabilized by Mg2+ and Na+ ions. OTA does not directly interact with the G-quadruplex, but specifically binds at the junction between the double helix and G-quadruplex through π-π stacking, halogen bonding (X-bond), and hydrophobic interaction. OTB has the same binding site as OTA but lacks the X-bond. The strong X-bond formed between the chlorine atom of OTA and the aromatic ring of C5 is the key to discriminating the strong binding toward OTA. The present research contributes to a deeper insight of aptamer molecular recognition, reveals structural basis of the high-affinity binding of aptamers, and provides a foundation for further aptamer engineering and applications.
Collapse
Affiliation(s)
- Guohua Xu
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan National Laboratory for Optoelectronics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, 430071, People's Republic of China
| | - Jiajing Zhao
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan National Laboratory for Optoelectronics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, 430071, People's Republic of China.,Xi'an Modern Chemistry Research Institute, Xi'an, 710065, People's Republic of China
| | - Hao Yu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, People's Republic of China.,University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Chen Wang
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan National Laboratory for Optoelectronics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, 430071, People's Republic of China.,University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Yangyu Huang
- Shaoyang University, Shaoyang, 422000, People's Republic of China
| | - Qiang Zhao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, People's Republic of China.,Hangzhou Institute for Advanced Study, UCAS, Hangzhou, 310000, People's Republic of China.,University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Xin Zhou
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan National Laboratory for Optoelectronics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, 430071, People's Republic of China
| | - Conggang Li
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan National Laboratory for Optoelectronics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, 430071, People's Republic of China
| | - Maili Liu
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan National Laboratory for Optoelectronics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, 430071, People's Republic of China
| |
Collapse
|