1
|
Ma B, Hu P, Zou L, Zhu Q, Zhang L, Ishikawa S, Ueda W, Li Y, Zhang Z. A Zeolitic Octahedral Metal Oxide with Ultrahigh Porosity for High-temperature and High-humidity Alkyne/Alkene Separation. Angew Chem Int Ed Engl 2024; 63:e202406374. [PMID: 38627207 DOI: 10.1002/anie.202406374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Indexed: 05/16/2024]
Abstract
Zeolitic octahedral metal oxide is a newly synthesized all-inorganic zeolitic material and has been used for adsorption, separation, and catalysis. Herein, a new zeolitic octahedral metal oxide was synthesized and characterized. The porous framework was established through the assembly of [P2Mo13O50] clusters with PO4 linkers. Guest molecules occupied the framework, which could be removed through heat treatment, thereby opening the micropores. The pore characteristics were controlled by the cations within the micropore, enabling the adjustment of the interactions with alkynes and alkenes. This resulted in good separation performance of ethylene/acetylene and propylene/propyne even under high temperature and humidity conditions. The high stability of the material enabled the efficient recovery and reuse without discernible loss in the separation performance. Due to the relatively weak interaction between the adsorbed alkyne and the framework, the adsorbent facilitated the recovery of a highly pure alkyne. This feature enhances the practical applicability of the material in various industrial processes.
Collapse
Affiliation(s)
- Baokai Ma
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang, 315211, P. R. China
| | - Panpan Hu
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang, 315211, P. R. China
| | - Liangcheng Zou
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang, 315211, P. R. China
| | - Qianqian Zhu
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang, 315211, P. R. China
| | - Lifeng Zhang
- Zhejiang Hymater New Materials Co., Ltd., Ningbo, Zhejiang, 315034, P. R. China
| | - Satoshi Ishikawa
- Faculty of Engineering, Kanagawa University Rokkakubashi, Kanagawa-ku, Yokohama-shi, Kanagawa, 221-8686, Japan
| | - Wataru Ueda
- Faculty of Engineering, Kanagawa University Rokkakubashi, Kanagawa-ku, Yokohama-shi, Kanagawa, 221-8686, Japan
| | - Yanshuo Li
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang, 315211, P. R. China
| | - Zhenxin Zhang
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang, 315211, P. R. China
| |
Collapse
|
2
|
Ma B, Li D, Zhu Q, Li Y, Ueda W, Zhang Z. A Zeolitic Octahedral Metal Oxide with Ultra‐Microporosity for Inverse CO
2
/C
2
H
2
Separation at High Temperature and Humidity. Angew Chem Int Ed Engl 2022; 61:e202209121. [DOI: 10.1002/anie.202209121] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Indexed: 12/31/2022]
Affiliation(s)
- Baokai Ma
- School of Materials Science and Chemical Engineering Ningbo University Ningbo Zhejiang, 315211 P. R. China
| | - Denan Li
- School of Materials Science and Chemical Engineering Ningbo University Ningbo Zhejiang, 315211 P. R. China
| | - Qianqian Zhu
- School of Materials Science and Chemical Engineering Ningbo University Ningbo Zhejiang, 315211 P. R. China
| | - Yanshuo Li
- School of Materials Science and Chemical Engineering Ningbo University Ningbo Zhejiang, 315211 P. R. China
- Zhejiang Hymater New Materials Co., Ltd. Ningbo Zhejiang, 315034 P. R. China
| | - Wataru Ueda
- Faculty of Engineering Kanagawa University Rokkakubashi Kanagawa-ku, Yokohama-shi Kanagawa, 221-8686 Japan
| | - Zhenxin Zhang
- School of Materials Science and Chemical Engineering Ningbo University Ningbo Zhejiang, 315211 P. R. China
| |
Collapse
|
3
|
Li Z, Zhang C, Sheng H, Wang J, Zhu Y, Yu L, Wang J, Peng Q, Lu G. Molecular Cocatalyst of p-Mercaptophenylboronic Acid Boosts the Plasmon-Mediated Reduction of p-Nitrothiophenol. ACS APPLIED MATERIALS & INTERFACES 2022; 14:38302-38310. [PMID: 35943401 DOI: 10.1021/acsami.2c08327] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Localized surface plasmon resonance (LSPR) has been demonstrated to be highly effective in the initialization or acceleration of chemical reactions because of its unique optical properties. However, because of the ultrashort lifetime (fs to ps) of plasmon-generated hot carriers, the potential of LSPR in photochemical reactions has not been fully exploited. Herein, we demonstrate an acceleration of the plasmon-mediated reduction of p-nitrothiophenol (PNTP) molecules on the surface of silver nanoparticles (AgNPs) with in situ Raman spectroscopy. p-Mercaptophenylboronic acid (PMPBA) molecules coadsorbed on AgNP surfaces act as a molecular cocatalyst in the plasmon-mediated reaction, resulting in a boosting of the PNTP reduction. This boosting is attributed to the improved transfer and separation of the plasmon-generated hot carriers at the interface of the AgNPs and coadsorbed PMPBA molecules. Our finding provides a highly simple, cost-effective, and highly effective strategy to promote plasmonic photochemistry by introducing a molecular cocatalyst, and this strategy can be extended to promote various plasmon-mediated reactions.
Collapse
Affiliation(s)
- Zhuoyao Li
- Key Laboratory of Flexible Electronics, School of Flexible Electronics (Future Technologies), and Institute of Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, PR China
| | - Chengyu Zhang
- Key Laboratory of Flexible Electronics, School of Flexible Electronics (Future Technologies), and Institute of Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, PR China
| | - Huixiang Sheng
- Key Laboratory of Flexible Electronics, School of Flexible Electronics (Future Technologies), and Institute of Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, PR China
| | - Jin Wang
- Key Laboratory of Flexible Electronics, School of Flexible Electronics (Future Technologies), and Institute of Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, PR China
| | - Yameng Zhu
- Key Laboratory of Flexible Electronics, School of Flexible Electronics (Future Technologies), and Institute of Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, PR China
| | - Liuyingzi Yu
- Key Laboratory of Flexible Electronics, School of Flexible Electronics (Future Technologies), and Institute of Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, PR China
| | - Junjie Wang
- Key Laboratory of Flexible Electronics, School of Flexible Electronics (Future Technologies), and Institute of Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, PR China
| | - Qiming Peng
- Key Laboratory of Flexible Electronics, School of Flexible Electronics (Future Technologies), and Institute of Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, PR China
| | - Gang Lu
- Key Laboratory of Flexible Electronics, School of Flexible Electronics (Future Technologies), and Institute of Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, PR China
- National Laboratory of Solid State Microstructures, Nanjing University, Nanjing 210093, PR China
| |
Collapse
|
4
|
Ma B, Li D, Zhu Q, Li Y, Ueda W, Zhang Z. A Zeolitic Octahedral Metal Oxide with Ultra‐Microporosity for Inverse CO2/C2H2 Separation at High Temperature and Humidity. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202209121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Baokai Ma
- Ningbo University School of Materials Science and Chemical Engineering CHINA
| | - Denan Li
- Ningbo University School of Materials Science and Chemical Engineering CHINA
| | - Qianqian Zhu
- Ningbo University School of Materials Science and Chemical Engineering CHINA
| | - Yanshuo Li
- Ningbo University School of Materials Science and Chemical Engineering CHINA
| | - Wataru Ueda
- Kanagawa University: Kanagawa Daigaku Faculty of Engineering JAPAN
| | - Zhenxin Zhang
- Ningbo University School of Material Science and Chemical Engineering Rokkakubashi, Kanagawa-ku, Yokohama-shi, Kanagawa, 221-8686, Japan. 315211 Ningbo CHINA
| |
Collapse
|