1
|
Cai Z, Bu QQ, Wang XY, Yang S, Zhou J, Yu JS. Recent advances and perspectives in synthetic applications of silylboronates as silyl radical precursors. Chem Sci 2025; 16:2154-2169. [PMID: 39811000 PMCID: PMC11726062 DOI: 10.1039/d4sc06777k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Accepted: 12/23/2024] [Indexed: 01/16/2025] Open
Abstract
Silylboronates, as powerful and versatile reagents, have been widely used in synthetic chemistry over the past few decades, due to their ability to incorporate silicon and boron atoms into organic molecules. With the rapid development of radical chemistry, the use of silylboronates as silyl radical precursors has recently become a research focus in organic synthesis. Significant achievements have been made in the synthetic applications of silylboronates as silyl radical sources for various C-Si and C-X bond forming transformations. This review summarizes these recent advances, discusses their advantages and limitations, and illustrates the synthetic chances still open for further research and applications in this emerging area.
Collapse
Affiliation(s)
- Zhihua Cai
- School of Chemistry and Chemical Engineering, State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University Shihezi Xinjiang 832003 P. R. China
- Xinjiang Key Laboratory of Organosilicon Functional Molecules and Materials Turpan Xinjiang 838200 P. R. China
| | - Qing-Qing Bu
- School of Chemistry and Chemical Engineering, State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University Shihezi Xinjiang 832003 P. R. China
- Xinjiang Key Laboratory of Organosilicon Functional Molecules and Materials Turpan Xinjiang 838200 P. R. China
| | - Xi-Yu Wang
- State Key Laboratory of Petroleum Molecular & Process Engineering, Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University Shanghai 200062 P. R. China
| | - Shengchao Yang
- School of Chemistry and Chemical Engineering, State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University Shihezi Xinjiang 832003 P. R. China
- Xinjiang Key Laboratory of Organosilicon Functional Molecules and Materials Turpan Xinjiang 838200 P. R. China
| | - Jian Zhou
- State Key Laboratory of Petroleum Molecular & Process Engineering, Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University Shanghai 200062 P. R. China
| | - Jin-Sheng Yu
- State Key Laboratory of Petroleum Molecular & Process Engineering, Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University Shanghai 200062 P. R. China
| |
Collapse
|
2
|
Charron O, Kosiuha M, Phansavath P, Ratovelomanana-Vidal V, Gontard G, Meyer C. Asymmetric Transfer Hydrogenation of gem-Difluorocyclopropenyl Ketones: The Synthesis and Functionalization of Enantioenriched cis gem-Difluorocyclopropyl Ketones. J Org Chem 2024; 89:14073-14080. [PMID: 39284014 DOI: 10.1021/acs.joc.4c01497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2024]
Abstract
The asymmetric transfer hydrogenation of gem-difluorocyclopropenyl ketones, catalyzed by a Noyori-Ikariya ruthenium complex, was developed to access substituted optically enriched cis-disubstituted gem-difluorocyclopropyl ketones, and the value of these latter building blocks was illustrated by the synthesis of heterocycles fused to the difluorocyclopropyl moiety.
Collapse
Affiliation(s)
- Olivier Charron
- Molecular, Macromolecular Chemistry, and Materials, ESPCI Paris-PSL, CNRS, 10 rue Vauquelin, 75005 Paris, France
| | - Marharyta Kosiuha
- Chimie ParisTech, CNRS, Institute of Chemistry for Life and Health Sciences, CSB2D Team, PSL University, 11 rue Pierre et Marie Curie, 75005 Paris, France
| | - Phannarath Phansavath
- Chimie ParisTech, CNRS, Institute of Chemistry for Life and Health Sciences, CSB2D Team, PSL University, 11 rue Pierre et Marie Curie, 75005 Paris, France
| | - Virginie Ratovelomanana-Vidal
- Chimie ParisTech, CNRS, Institute of Chemistry for Life and Health Sciences, CSB2D Team, PSL University, 11 rue Pierre et Marie Curie, 75005 Paris, France
| | - Geoffrey Gontard
- CNRS, Institut Parisien de Chimie Moléculaire, Sorbonne Université, 4 Place Jussieu, 75005 Paris, France
| | - Christophe Meyer
- Molecular, Macromolecular Chemistry, and Materials, ESPCI Paris-PSL, CNRS, 10 rue Vauquelin, 75005 Paris, France
| |
Collapse
|
3
|
Itoh T, Hayase S, Nokami T. Synthesis of Selectively gem-Difluorinated Molecules; Chiral gem-Difluorocyclopropanes via Chemo-Enzymatic Reaction and gem-Difluorinated Compounds via Radical Reaction. CHEM REC 2023; 23:e202300028. [PMID: 36949016 DOI: 10.1002/tcr.202300028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 03/07/2023] [Indexed: 03/24/2023]
Abstract
The incorporation of fluorine atoms into an organic compound can alter the chemical reactivity or biological activity of the resulting compound due to the strong electron withdrawing nature of the fluorine atom. We have synthesized many original gem-difluorinated compounds and described the results in four sections. The first section describes the synthesis of optically active-gem-difluorocyclopropanes via the chemo-enzymatic reaction; we applied these compounds to liquid crystalline molecules, then further discovered a potent DNA cleavage activity for the gem-difluorocyclopropane derivatives. The second section describes the synthesis of selectively gem-difluorinated compounds via a radical reaction; we synthesized fluorinated analogues of a sex pheromone of the male African sugarcane borer, Eldana saccharina, and used the compounds as proof for investigating the origin of pheromone molecule recognition on the receptor protein. The third involves the synthesis of 2,2-difluorinated-esters by visible light-driven radical addition of 2,2-difluoroacetate with alkenes or alkynes in the presence of an organic pigment. The last section describes the synthesis of gem-difluorinated compounds via the ring-opening of gem-difluorocyclopropanes. We further developed a novel method of synthesizing gem-difluorohomoallylic alcohols via the ring-opening of gem-difluorocyclopropane and aerobic oxidation by photo-irradiation in the presence of an organic pigment. Since gem-difluorinated compounds that were prepared by the present method have two olefinic moieties with a different reactivity at the terminal position, we accomplished the synthesis of four types of gem-difluorinated cyclic alkenols via the ring-closing-metathesis (RCM) reaction.
Collapse
Affiliation(s)
- Toshiyuki Itoh
- Toyota Physical and Chemical Research Institute, Emeritus Professor of Tottori University, 41-1 Yokomichi, 480-1192, Nagakute city, Aichi, Japan
| | - Shuichi Hayase
- Department of Chemistry and Biotechnology, Tottori University, 4-101 Koyama-minami, 680-8552, Tottori, Japan
| | - Toshiki Nokami
- Department of Chemistry and Biotechnology, Center for Research on Green Sustainable Chemistry, Tottori University, 4-101 Koyama-minami, 680-8552, Tottori, Japan
| |
Collapse
|
4
|
Mancinelli JP, Kong WY, Guo W, Tantillo DJ, Wilkerson-Hill SM. Borane-Catalyzed C-F Bond Functionalization of gem-Difluorocyclopropenes Enables the Synthesis of Orphaned Cyclopropanes. J Am Chem Soc 2023; 145:17389-17397. [PMID: 37494703 DOI: 10.1021/jacs.3c05278] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2023]
Abstract
Herein, we disclose an approach to synthesize tert-alkyl cyclopropanes by leveraging C-F bond functionalization of gem-difluorocyclopropenes using tris(pentafluorophenyl)borane catalysis. The reaction proceeds through the intermediacy of a fluorocyclopropenium ion, which was confirmed by the isolation of [Ph2(C6D5)C3]+[(C6F5)3BF]-. We found that silylketene acetal nucleophiles were optimal reaction partners with fluorocyclopropenium ion intermediates yielding fully substituted cyclopropenes functionalized with two α-tert-alkyl centers (63-93% yield). The regioselectivity of the addition to cyclopropenium ions is controlled by their steric and electronic properties and enables access to 3,3-bis(difluoromethyl)cyclopropenes in short order. The resulting cyclopropene products are readily reduced to the corresponding orphaned cyclopropanes under hydrogenation conditions. Quantum chemical calculations reveal the nature of the C-F bond cleavage steps and provide evidence for catalysis by boron and not silylated oxonium ions, though Si-F bond formation is the enthalpic driving force for the reaction.
Collapse
Affiliation(s)
- Joseph P Mancinelli
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Wang-Yeuk Kong
- Department of Chemistry, University of California, Davis, Davis, California 95616, United States
| | - Wentao Guo
- Department of Chemistry, University of California, Davis, Davis, California 95616, United States
| | - Dean J Tantillo
- Department of Chemistry, University of California, Davis, Davis, California 95616, United States
| | - Sidney M Wilkerson-Hill
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
5
|
Chen ZY, Yang MW, Wang ZL, Xu YH. Copper-Catalyzed Enantioselective Desymmetric Protosilylation of Prochiral Diynes: Access to Optically Functionalized Tertiary Alcohols. Org Lett 2023. [PMID: 37418590 DOI: 10.1021/acs.orglett.3c01702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/09/2023]
Abstract
In this protocol, a copper-catalyzed desymmetric protosilylation of prochiral diynes was developed. The corresponding products were obtained in moderate to high yields and enantiomeric ratios. This approach provides a simple method for synthesizing functionalized chiral tertiary alcohols in the presence of a chiral pyridine-bisimidazoline (Pybim) ligand.
Collapse
Affiliation(s)
- Zhi-Yuan Chen
- Department of Chemistry, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Meng-Wei Yang
- Department of Chemistry, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Zi-Lu Wang
- Department of Chemistry, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Yun-He Xu
- Department of Chemistry, University of Science and Technology of China, Hefei 230026, P. R. China
| |
Collapse
|
6
|
Jiang ZT, Chen Z, Zeng Y, Shi JL, Xia Y. Enantioselective Formation of All-Carbon Quaternary Stereocenters in gem-Difluorinated Cyclopropanes via Rhodium-Catalyzed Stereoablative Kinetic Resolution. Org Lett 2022; 24:6176-6181. [PMID: 35951978 DOI: 10.1021/acs.orglett.2c02410] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Herein, we report an effective method to offer chiral gem-difluorinated cyclopropanes containing an all-carbon quaternary stereocenter by rhodium-catalyzed stereoablative kinetic resolution. The activation of a sterically hindered all-carbon quaternary C-C bond through oxidative addition with a chiral rhodium complex is proposed as the enantiodetermining step. A wide range of gem-difluorinated cyclopropanes can be obtained with excellent ee values (ee = 87% to >99.9%), which are demonstrated to be useful chiral fluorine-containing building blocks by a series of postfunctionalizations.
Collapse
Affiliation(s)
- Zhong-Tao Jiang
- West China School of Public Health and West China Fourth Hospital, West China-PUMC C.C. Chen Institute of Health, and State Key Laboratory of Biotherapy, Sichuan University, Chengdu 610041, China
| | - Zhengzhao Chen
- West China School of Public Health and West China Fourth Hospital, West China-PUMC C.C. Chen Institute of Health, and State Key Laboratory of Biotherapy, Sichuan University, Chengdu 610041, China
| | - Yaxin Zeng
- West China School of Public Health and West China Fourth Hospital, West China-PUMC C.C. Chen Institute of Health, and State Key Laboratory of Biotherapy, Sichuan University, Chengdu 610041, China
| | - Jiang-Ling Shi
- West China School of Public Health and West China Fourth Hospital, West China-PUMC C.C. Chen Institute of Health, and State Key Laboratory of Biotherapy, Sichuan University, Chengdu 610041, China
| | - Ying Xia
- West China School of Public Health and West China Fourth Hospital, West China-PUMC C.C. Chen Institute of Health, and State Key Laboratory of Biotherapy, Sichuan University, Chengdu 610041, China
| |
Collapse
|
7
|
Sekine K, Akaishi D, Konagaya K, Ito S. Copper-Catalyzed Enantioselective Hydrosilylation of gem-Difluorocyclopropenes Leading to a Stereochemical Study of the Silylated gem-Difluorocyclopropanes. Chemistry 2022; 28:e202200657. [PMID: 35393679 PMCID: PMC9321851 DOI: 10.1002/chem.202200657] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Indexed: 12/12/2022]
Abstract
Optically active cyclopropanes have been widely investigated especially from the views of pharmaceutical and agrochemical industries, and substituting one of the methylenes with the difluoromethylene unit should be promising for developing novel biologically relevant compounds and functional materials. In this paper, the copper‐catalyzed enantioselective hydrosilylation of gem‐difluorocyclopropenes to provide the corresponding chiral gem‐difluorocyclopropanes is presented. The use of copper(I) chloride, chiral ligands including bidentate BINAPs and monodentate phosphoramidites, and silylborane Me2PhSi‐Bpin accompanying sodium tert‐butoxide in methanol was appropriate for the enantioselective hydrosilylation of the strained C=C double bond, and the resultant chiral difluorinated three‐membered ring was unambiguously characterized. Subsequent activation of the silyl groups in enantio‐enriched gem‐difluorocyclopropanes showed substantial reduction of the enantiopurity, indicating cleavage of the distal C−C bond leading to the transient acyclic intermediates.
Collapse
Affiliation(s)
- Keisuke Sekine
- Department of Applied Chemistry, School of Materials and Chemical Technology, Tokyo Institute of Technology, 2-12-1-H113 Ookayama, Meguro-ku, Tokyo, 152-8552, Japan
| | - Dai Akaishi
- Department of Applied Chemistry, School of Materials and Chemical Technology, Tokyo Institute of Technology, 2-12-1-H113 Ookayama, Meguro-ku, Tokyo, 152-8552, Japan
| | - Kakeru Konagaya
- Department of Applied Chemistry, School of Materials and Chemical Technology, Tokyo Institute of Technology, 2-12-1-H113 Ookayama, Meguro-ku, Tokyo, 152-8552, Japan
| | - Shigekazu Ito
- Department of Applied Chemistry, School of Materials and Chemical Technology, Tokyo Institute of Technology, 2-12-1-H113 Ookayama, Meguro-ku, Tokyo, 152-8552, Japan
| |
Collapse
|
8
|
Xu H, Fang XJ, Huang WS, Xu Z, Li L, Ye F, Cao J, Xu LW. Catalytic regio- and stereoselective silicon–carbon bond formations on unsymmetric gem-difluorocyclopropenes by capture of silyl metal species. Org Chem Front 2022. [DOI: 10.1039/d2qo00943a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A highly regioselective silylation of unsymmetric gem-difluorocyclopropenes was achieved by the capture of in-situ formed silyl metal intermediates, which gave structurally diverse silyldifluorocyclopropanes with good yields and stereoselectivity.
Collapse
Affiliation(s)
- Hao Xu
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, and Key Laboratory of Organosilicon Material Technology of Zhejiang Province, College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, No. 2318, Yuhangtang Road, Hangzhou 311121, P. R. China
| | - Xiao-Jun Fang
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, and Key Laboratory of Organosilicon Material Technology of Zhejiang Province, College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, No. 2318, Yuhangtang Road, Hangzhou 311121, P. R. China
| | - Wei-Sheng Huang
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, and Key Laboratory of Organosilicon Material Technology of Zhejiang Province, College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, No. 2318, Yuhangtang Road, Hangzhou 311121, P. R. China
| | - Zheng Xu
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, and Key Laboratory of Organosilicon Material Technology of Zhejiang Province, College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, No. 2318, Yuhangtang Road, Hangzhou 311121, P. R. China
| | - Li Li
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, and Key Laboratory of Organosilicon Material Technology of Zhejiang Province, College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, No. 2318, Yuhangtang Road, Hangzhou 311121, P. R. China
| | - Fei Ye
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, and Key Laboratory of Organosilicon Material Technology of Zhejiang Province, College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, No. 2318, Yuhangtang Road, Hangzhou 311121, P. R. China
| | - Jian Cao
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, and Key Laboratory of Organosilicon Material Technology of Zhejiang Province, College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, No. 2318, Yuhangtang Road, Hangzhou 311121, P. R. China
| | - Li-Wen Xu
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, and Key Laboratory of Organosilicon Material Technology of Zhejiang Province, College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, No. 2318, Yuhangtang Road, Hangzhou 311121, P. R. China
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Suzhou Research Institute and Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, P. R. China
| |
Collapse
|