1
|
Dhayalan V, Dodke VS, Pradeep Kumar M, Korkmaz HS, Hoffmann-Röder A, Amaladass P, Dandela R, Dhanusuraman R, Knochel P. Recent synthetic strategies for the functionalization of fused bicyclic heteroaromatics using organo-Li, -Mg and -Zn reagents. Chem Soc Rev 2024; 53:11045-11099. [PMID: 39311874 DOI: 10.1039/d4cs00369a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2024]
Abstract
This review highlights the use of functionalized organo-Li, -Mg and -Zn reagents for the construction and selective functionalization of 5- and 6-membered fused bicyclic heteroaromatics. Special attention is given to the discussion of advanced syntheses for the preparation of highly functionalized heteroaromatic scaffolds, including quinolines, naphthyridines, indoles, benzofurans, benzothiophenes, benzoxazoles, benzothiazoles, benzopyrimidines, anthranils, thienothiophenes, purine coumarins, chromones, quinolones and phthalazines and their fused heterocyclic derivatives. The organometallic reagents used for the desired functionalizations of these scaffolds are generally prepared in situ using the following methods: (i) through directed selective metalation reactions (DoM), (ii) by means of halogen/metal exchange reactions, (iii) through oxidative metal insertions (Li, Mg, Zn), and (iv) by transmetalation reactions (organo-Li and Mg transmetalations with ZnCl2 or ZnO(Piv)2). The resulting reactive organometallic reagents allow a wide range of C-C, C-N and C-X cross-coupling reactions with different electrophiles, employing in particular Kumada or Negishi protocols among other transition metal (Pd, Ni, Co, Cu, Cr, Fe, etc.)-catalyzed processes. In addition, key developments concerning selective metalation techniques will be presented, which rely on the use of RLi, LDA and TMP metal bases. These methods are now widely employed in organic synthetic chemistry and have proven to be particularly valuable for drug development programs in the pharmaceutical industry. New and improved protocols have resulted in many Li, Mg and Zn organyls now being compatible with functionalized aryl, heteroaryl, alkenyl, alkynyl and alkyl compounds even in the presence of labile functional groups, making these reagents well-suited for C(sp2)-C(sp2), C(sp2)-C(sp) and C(sp2)-C(sp3) cross-coupling reactions with fused heteroaryl halides. In addition, the use of some transition metal-catalyzed processes occasionally allows a reversed role of the reactants in cross-coupling reactions, providing alternative synthetic routes for the preparation of fused heteroaromatic-based bioactive drugs and natural products. In line with this, this article points to novel methods for the functionalization of bicyclic heteroaromatic scaffolds by organometallic reagents that have been published in the period 2010-2023.
Collapse
Affiliation(s)
- Vasudevan Dhayalan
- Department of Chemistry, National Institute of Technology Puducherry, Karaikal-609609, Union Territory Puducherry, India.
| | - Vishal S Dodke
- Department of Industrial and Engineering Chemistry, Institute of Chemical Technology, Indian Oil Odisha Campus, IIT, Kharagpur extension Centre, Mouza Samantpuri, Bhubaneswar-751013, Odisha, India
| | - Marappan Pradeep Kumar
- Department of Chemistry, National Institute of Technology Puducherry, Karaikal-609609, Union Territory Puducherry, India.
| | - Hatice Seher Korkmaz
- Department of Chemistry, Ludwig-Maximilians-University München, Butenandtstrasse 5-13, Haus F, 81377 Munich, Germany.
| | - Anja Hoffmann-Röder
- Department of Chemistry, Ludwig-Maximilians-University München, Butenandtstrasse 5-13, Haus F, 81377 Munich, Germany.
| | - Pitchamuthu Amaladass
- Department of Chemistry, Madanapalle Institute of Technology & Science, Madanapalle 517325, Andhra Pradesh, India
| | - Rambabu Dandela
- Department of Industrial and Engineering Chemistry, Institute of Chemical Technology, Indian Oil Odisha Campus, IIT, Kharagpur extension Centre, Mouza Samantpuri, Bhubaneswar-751013, Odisha, India
| | - Ragupathy Dhanusuraman
- Central Instrumentation Facility (CIF), School of Physical, Chemical and Applied Sciences, Pondicherry University, Puducherry-605014, India
| | - Paul Knochel
- Department of Chemistry, Ludwig-Maximilians-University München, Butenandtstrasse 5-13, Haus F, 81377 Munich, Germany.
| |
Collapse
|
2
|
Desenko SM, Gorobets MY, Lipson VV, Sakhno YI, Chebanov VA. Dihydroazolopyrimidines: Past, Present and Perspectives in Synthesis, Green Chemistry and Drug Discovery. CHEM REC 2024; 24:e202300244. [PMID: 37668291 DOI: 10.1002/tcr.202300244] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 08/22/2023] [Indexed: 09/06/2023]
Abstract
Dihydroazolopyrimidines are an important class of heterocycles that are isosteric to natural purines and are therefore of great interest primarily as drug-like molecules. In contrast to the heteroaromatic analogs, synthetic approaches to these compounds were developed much later, and their chemical properties and biological activity have not been studied in detail until recently. In the review, different ways to build dihydroazolopyrimidine systems from different building blocks are described - via the initial formation of a partially hydrogenated pyrimidine ring or an azole ring, as well as a one-pot assembly of azole and azine fragments. Special attention is given to modern approaches: multicomponent reactions, green chemistry, and the use of non-classical activation methods. Information on the chemical properties of dihydroazolopyrimidines and the prospects for their use in the design of drugs of various profiles are also summarized in this review.
Collapse
Affiliation(s)
- Serhiy M Desenko
- Department of Organic and Bioorganic Chemistry, State Scientific Institution "Institute for Single Crystals" NAS of Ukraine, Nauky ave. 60, Kharkiv, Ukraine, 61072
| | - Mykola Yu Gorobets
- Department of Organic and Bioorganic Chemistry, State Scientific Institution "Institute for Single Crystals" NAS of Ukraine, Nauky ave. 60, Kharkiv, Ukraine, 61072
| | - Victoria V Lipson
- Department of Organic and Bioorganic Chemistry, State Scientific Institution "Institute for Single Crystals" NAS of Ukraine, Nauky ave. 60, Kharkiv, Ukraine, 61072
- Faculty of Chemistry, V.N. Karazin Kharkiv National University, Svobody sq. 4, Kharkiv, Ukraine, 61022
- Department of Medicinal Chemistry, State Institution "V. Ya. Danilevsky Institute for Endocrine Pathology Problems" NAMS of Ukraine, Alchevskikh St. 10, Kharkiv, Ukraine, 61002
| | - Yana I Sakhno
- Department of Organic and Bioorganic Chemistry, State Scientific Institution "Institute for Single Crystals" NAS of Ukraine, Nauky ave. 60, Kharkiv, Ukraine, 61072
| | - Valentyn A Chebanov
- Department of Organic and Bioorganic Chemistry, State Scientific Institution "Institute for Single Crystals" NAS of Ukraine, Nauky ave. 60, Kharkiv, Ukraine, 61072
- Faculty of Chemistry, V.N. Karazin Kharkiv National University, Svobody sq. 4, Kharkiv, Ukraine, 61022
| |
Collapse
|
3
|
Kastrati A, Kremsmair A, Sunagatullina AS, Korotenko V, Guersoy YC, Rout SK, Lima F, Brocklehurst CE, Karaghiosoff K, Zipse H, Knochel P. Calculation-assisted regioselective functionalization of the imidazo[1,2- a]pyrazine scaffold via zinc and magnesium organometallic intermediates. Chem Sci 2023; 14:11261-11266. [PMID: 37860644 PMCID: PMC10583695 DOI: 10.1039/d3sc02893c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 09/24/2023] [Indexed: 10/21/2023] Open
Abstract
Straightforward calculations such as determinations of pKa values and N-basicities have allowed the development of a set of organometallic reactions for the regioselective functionalization of the underexplored fused N-heterocycle imidazo[1,2-a]pyrazine. Thus, regioselective metalations of 6-chloroimidazo[1,2-a]pyrazine using TMP-bases (TMP = 2,2,6,6-tetramethylpiperidyl) such as TMPMgCl·LiCl and TMP2Zn·2MgCl2·2LiCl provided Zn- and Mg-intermediates, that after quenching with various electrophiles gave access to polyfunctionalized imidazopyrazine heterocycles. Additionally, the use of TMP2Zn·2MgCl2·2LiCl as base for the first metalation allowed an alternative regioselective metalation. Nucleophilic additions at position 8 as well as selective Negishi cross-couplings complete the set of methods for selectively decorating this heterocycle of the future.
Collapse
Affiliation(s)
- Agonist Kastrati
- Department Chemie, Ludwig-Maximilians-Universität München Butenandtstrasse 5-13, Haus F 81377 München Germany
| | - Alexander Kremsmair
- Department Chemie, Ludwig-Maximilians-Universität München Butenandtstrasse 5-13, Haus F 81377 München Germany
| | - Alisa S Sunagatullina
- Department Chemie, Ludwig-Maximilians-Universität München Butenandtstrasse 5-13, Haus F 81377 München Germany
| | - Vasilii Korotenko
- Department Chemie, Ludwig-Maximilians-Universität München Butenandtstrasse 5-13, Haus F 81377 München Germany
| | - Yusuf C Guersoy
- Department Chemie, Ludwig-Maximilians-Universität München Butenandtstrasse 5-13, Haus F 81377 München Germany
| | - Saroj K Rout
- Department Chemie, Ludwig-Maximilians-Universität München Butenandtstrasse 5-13, Haus F 81377 München Germany
| | - Fabio Lima
- Global Discovery Chemistry, Novartis Institutes for BioMedical Research 4057 Basel Switzerland
| | - Cara E Brocklehurst
- Global Discovery Chemistry, Novartis Institutes for BioMedical Research 4057 Basel Switzerland
| | - Konstantin Karaghiosoff
- Department Chemie, Ludwig-Maximilians-Universität München Butenandtstrasse 5-13, Haus F 81377 München Germany
| | - Hendrik Zipse
- Department Chemie, Ludwig-Maximilians-Universität München Butenandtstrasse 5-13, Haus F 81377 München Germany
| | - Paul Knochel
- Department Chemie, Ludwig-Maximilians-Universität München Butenandtstrasse 5-13, Haus F 81377 München Germany
| |
Collapse
|