1
|
Wang Q, Murphy RP, Gau MR, Carroll PJ, Tomson NC. Controlling the Size of Molecular Copper Clusters Supported by a Multinucleating Macrocycle. Inorg Chem 2024; 63:18332-18344. [PMID: 39292545 DOI: 10.1021/acs.inorgchem.4c02416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/20/2024]
Abstract
The use of a nonrigid, pyridyldialdimine-derived macrocyclic ligand (3PDAI2) enabled the synthesis of well-defined mono-, di-, tri-, and tetra-nuclear Cu(I) complexes in good yields through rational synthetic means. Starting from mono- and diargentous 3PDAI2 complexes, transmetalation to Cu(I) proceeded smoothly with formation of AgX (X = Cl, I) salts to generate mono-, di-, and trinuclear copper complexes. Monodentate supporting ligands (MeCN, xylNC, PMe3, PPh3) were found to either transmetallate with or bind various di- and trinuclear clusters. The solution-phase dynamic behaviors of these species were studied through NMR spectroscopic investigations, and an in-depth study of the trinuclear systems revealed a rate dependence on the identity of the supporting ligand, indicating that ligand dissociation reactions were involved in the dynamic exchange processes. Synthetic investigations further found methods for the purposeful interconversion between the di- and trinuclear systems as well as the synthesis of a pseudotetrahedral tetracopper complex with two μ-Ph supporting ligands.
Collapse
Affiliation(s)
- Qiuran Wang
- Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania 19104, United States
| | - Ryan P Murphy
- Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania 19104, United States
| | - Michael R Gau
- Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania 19104, United States
| | - Patrick J Carroll
- Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania 19104, United States
| | - Neil C Tomson
- Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
2
|
Bienenmann RLM, de Vries MR, Lutz M, Broere DLJ. Understanding the Remarkable Stability of Well-Defined Dinuclear Copper(I) Carbene Complexes. Chemistry 2024; 30:e202400283. [PMID: 38630913 DOI: 10.1002/chem.202400283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 04/16/2024] [Accepted: 04/17/2024] [Indexed: 04/19/2024]
Abstract
The synthesis of a well-defined dicopper carbene complex supported by the PNNP (2,7-bis(di-tert-butylphosphaneyl)methyl-1,8-naphthyridine) expanded pincer ligand is reported. This carbene complex is remarkably stable, even in the presence of air and water. The reactivity of this complex was explored towards typical carbene transfer substrates and its electronic structure was investigated. Using a combination of experiments and DFT calculations, the principles that underly the stability of dinuclear carbene complexes are probed.
Collapse
Affiliation(s)
- Roel L M Bienenmann
- Organic Chemistry and Catalysis, Institute for Sustainable and Circular Chemistry, Faculty of Science, Utrecht University, Universiteitsweg 99, 3584 CG, Utrecht, The Netherlands
| | - Marianne R de Vries
- Organic Chemistry and Catalysis, Institute for Sustainable and Circular Chemistry, Faculty of Science, Utrecht University, Universiteitsweg 99, 3584 CG, Utrecht, The Netherlands
| | - Martin Lutz
- Structural Biochemistry, Bijvoet Centre for Biomolecular Research, Faculty of Science, Utrecht University, Universiteitsweg 99, 3584 CG, Utrecht, The Netherlands
| | - Daniël L J Broere
- Organic Chemistry and Catalysis, Institute for Sustainable and Circular Chemistry, Faculty of Science, Utrecht University, Universiteitsweg 99, 3584 CG, Utrecht, The Netherlands
| |
Collapse
|
3
|
Weiser J, Cui J, Dewhurst RD, Braunschweig H, Engels B, Fantuzzi F. Structure and bonding of proximity-enforced main-group dimers stabilized by a rigid naphthyridine diimine ligand. J Comput Chem 2023; 44:456-467. [PMID: 36054757 DOI: 10.1002/jcc.26994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 08/01/2022] [Accepted: 08/03/2022] [Indexed: 12/31/2022]
Abstract
The development of ligands capable of effectively stabilizing highly reactive main-group species has led to the experimental realization of a variety of systems with fascinating properties. In this work, we computationally investigate the electronic, structural, energetic, and bonding features of proximity-enforced group 13-15 homodimers stabilized by a rigid expanded pincer ligand based on the 1,8-naphthyridine (napy) core. We show that the redox-active naphthyridine diimine (NDI) ligand enables a wide variety of structural motifs and element-element interaction modes, the latter ranging from isolated, element-centered lone pairs (e.g., E = Si, Ge) to cases where through-space π bonds (E = Pb), element-element multiple bonds (E = P, As) and biradical ground states (E = N) are observed. Our results hint at the feasibility of NDI-E2 species as viable synthetic targets, highlighting the versatility and potential applications of napy-based ligands in main-group chemistry.
Collapse
Affiliation(s)
- Jonas Weiser
- Institute for Inorganic Chemistry, Julius-Maximilians-Universität Würzburg, Würzburg, Germany.,Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Würzburg, Germany.,Institute for Physical and Theoretical Chemistry, Julius-Maximilians-Universität Würzburg, Würzburg, Germany
| | - Jingjing Cui
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan, People's Republic of China
| | - Rian D Dewhurst
- Institute for Inorganic Chemistry, Julius-Maximilians-Universität Würzburg, Würzburg, Germany.,Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Würzburg, Germany
| | - Holger Braunschweig
- Institute for Inorganic Chemistry, Julius-Maximilians-Universität Würzburg, Würzburg, Germany.,Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Würzburg, Germany
| | - Bernd Engels
- Institute for Physical and Theoretical Chemistry, Julius-Maximilians-Universität Würzburg, Würzburg, Germany
| | - Felipe Fantuzzi
- Institute for Inorganic Chemistry, Julius-Maximilians-Universität Würzburg, Würzburg, Germany.,Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Würzburg, Germany.,School of Chemistry and Forensic Science, University of Kent, Canterbury, UK
| |
Collapse
|
4
|
Hu J, Chai Z, Liu W, Wei J, Lv ZJ, Zhang WX. Direct and chlorine-free synthesis of phosphafluorenes or their oxides from white phosphorus. GREEN SYNTHESIS AND CATALYSIS 2022. [DOI: 10.1016/j.gresc.2022.12.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
|