1
|
Andreeva DV, Tikhomirov AS, Shchekotikhin AE. Synthesis and antiproliferative activity of thiazole-fused anthraquinones. Org Biomol Chem 2024; 22:8493-8504. [PMID: 39344399 DOI: 10.1039/d4ob01284d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Heterocyclic derivatives of anthraquinone demonstrated a high potential for the development of new antitumor compounds. In this study, we report a scheme for the synthesis of thiazole-fused anthraquinones and the results of their antiproliferative activity. A convenient metal-free method for the thiolation of anthraquinone derivatives has been proposed for the preparation of the key intermediates. C-S bond formation upon nucleophilic substitution of the bromine atom in anthraquinone with 4-methoxybenzyl mercaptan readily occurs under mild conditions using t-BuOK as a base. This process was used for the preparation of anthra[2,3-d]thiazoles with various substituents at position 2, in particular the alkoxycarbonyl group. Study of the chemical properties resulted in the transformation of anthra[2,3-d]thiazole-2-carboxylic acid into a series of carboxamides. Screening the antiproliferative effect revealed moderate activity of compounds 12b and 12d against human cancer cells, showing weaker activity than anthra[2,3-d]thiophene analogs and indicating a crucial role of the heterocyclic nucleus in the antitumor potency of heteroareneanthraquinones.
Collapse
Affiliation(s)
- Daria V Andreeva
- Gause Institute of New Antibiotics, 11 B. Pirogovskaya Street, Moscow, 119021, Russian Federation.
| | - Alexander S Tikhomirov
- Gause Institute of New Antibiotics, 11 B. Pirogovskaya Street, Moscow, 119021, Russian Federation.
| | - Andrey E Shchekotikhin
- Gause Institute of New Antibiotics, 11 B. Pirogovskaya Street, Moscow, 119021, Russian Federation.
| |
Collapse
|
2
|
Alabugin IV, Eckhardt P, Christopher KM, Opatz T. The Photoredox Paradox: Electron and Hole Upconversion as the Hidden Secrets of Photoredox Catalysis. J Am Chem Soc 2024; 146:27233-27254. [PMID: 39316772 DOI: 10.1021/jacs.4c10422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/26/2024]
Abstract
Although photoredox catalysis is complex from a mechanistic point of view, it is also often surprisingly efficient. In fact, the quantum efficiency of a puzzlingly large portion of photoredox reactions exceeds 100% (i.e., the measured quantum yields (QYs) are >1). Hence, these photoredox reactions can be more than perfect with respect to photon utilization. In several documented cases, a single absorbed photon can lead to the formation of >100 molecules of the product, behavior known to originate from chain processes. In this Perspective, we explore the underlying reasons for this efficiency, identify the nature of common catalytic chains, and highlight the differences between HAT and SET chains. Our goal is to show why chains are especially important in photoredox catalysis and where the thermodynamic driving force that sustains the SET catalytic cycles comes from. We demonstrate how the interplay of polar and radical processes can activate hidden catalytic pathways mediated by electron and hole transfer (i.e., electron and hole catalysis). Furthermore, we illustrate how the phenomenon of redox upconversion serves as a thermodynamic precondition for electron and hole catalysis. After discussing representative mechanistic puzzles, we analyze the most common bond forming steps, where redox upconversion frequently occurs (and issometimes unavoidable). In particular, we highlight the importance of 2-center-3-electron bonds as a recurring motif that allows a rational chemical approach to the design of redox upconversion processes.
Collapse
Affiliation(s)
- Igor V Alabugin
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306-4390, United States
| | - Paul Eckhardt
- Department of Chemistry, Johannes Gutenberg University, Duesbergweg 10-14, 55128 Mainz, Germany
| | - Kimberley M Christopher
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306-4390, United States
| | - Till Opatz
- Department of Chemistry, Johannes Gutenberg University, Duesbergweg 10-14, 55128 Mainz, Germany
| |
Collapse
|
3
|
Hu C, Kuhn L, Makurvet FD, Knorr ES, Lin X, Kawade RK, Mentink-Vigier F, Hanson K, Alabugin IV. Tethering Three Radical Cascades for Controlled Termination of Radical Alkyne peri-Annulations: Making Phenalenyl Ketones without Oxidants. J Am Chem Soc 2024; 146:4187-4211. [PMID: 38316011 DOI: 10.1021/jacs.3c13371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
Although Bu3Sn-mediated radical alkyne peri-annulations allow access to phenalenyl ring systems, the oxidative termination of these cascades provides only a limited selection of the possible isomeric phenalenone products with product selectivity controlled by the intrinsic properties of the new cyclic systems. In this work, we report an oxidant-free termination strategy that can overcome this limitation and enable selective access to the full set of isomerically functionalized phenalenones. The key to preferential termination is the preinstallation of a "weak link" that undergoes C-O fragmentation in the final cascade step. Breaking a C-O bond is assisted by entropy, gain of conjugation in the product, and release of stabilized radical fragments. This strategy is expanded to radical exo-dig cyclization cascades of oligoalkynes, which provide access to isomeric π-extended phenalenones. Conveniently, these cascades introduce functionalities (i.e., Bu3Sn and iodide moieties) amenable to further cross-coupling reactions. Consequently, a variety of polyaromatic diones, which could serve as phenalenyl-based open-shell precursors, can be synthesized.
Collapse
Affiliation(s)
- Chaowei Hu
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306-4390, United States
| | - Leah Kuhn
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306-4390, United States
| | - Favour D Makurvet
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306-4390, United States
| | - Erica S Knorr
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306-4390, United States
| | - Xinsong Lin
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306-4390, United States
| | - Rahul K Kawade
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306-4390, United States
| | - Frederic Mentink-Vigier
- National High Magnetic Field Laboratory, Florida State University, Tallahassee, Florida 32310, United States
| | - Kenneth Hanson
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306-4390, United States
| | - Igor V Alabugin
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306-4390, United States
| |
Collapse
|
4
|
Chabuka BK, Alabugin IV. Hole Catalysis of Cycloaddition Reactions: How to Activate and Control Oxidant Upconversion in Radical-Cationic Diels-Alder Reactions. J Am Chem Soc 2023; 145:19354-19367. [PMID: 37625247 DOI: 10.1021/jacs.3c06106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/27/2023]
Abstract
In order to use holes as catalysts, the oxidized product should be able to transfer the hole to a fresh reactant. For that, the hole-catalyzed reaction must increase the oxidation potential along the reaction path, i.e., lead to "hole upconversion." If this thermodynamic requirement is satisfied, a hole injected via one-electron oxidation can persist through multiple propagation cycles and serve as a true catalyst. This work provides guidelines for the rational design of hole-catalyzed Diels-Alder (DA) reactions, the prototypical cycloaddition. After revealing the crucial role of hyperconjugation in the absence of hole upconversion in the parent DA reaction, we show how upconversion can be reactivated by proper substitution. For this purpose, we computationally evaluate the contrasting effects of substituents at the three possible positions in the two reactants. The occurrence and magnitude of hole upconversion depend strongly on the placement and nature of substituents. For example, donors at C1 in 1,3-butadiene shift the reaction to the hole-upconverted regime with an increased oxidation potential of up to 1.0 V. In contrast, hole upconversion in C2-substituted 1,3-butadienes is activated by acceptors with the oxidation potential increase up to 0.54 V. Dienophile substitution results in complex trends because the radical cation can be formed at either the dienophile or the diene. Hole upconversion is always present in the former scenario (up to 0.65 V). Finally, we report interesting stereoelectronic effects that can activate or deactivate upconversion via a conformational change.
Collapse
Affiliation(s)
- Beauty K Chabuka
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306, United States
| | - Igor V Alabugin
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306, United States
| |
Collapse
|