1
|
Ahmad M, Nawaz T, Hussain I, Meharban F, Chen X, Khan SA, Iqbal S, Rosaiah P, Ansari MZ, Zoubi WA, Zhang K. Evolution of Metal Tellurides for Energy Storage/Conversion: From Synthesis to Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2310099. [PMID: 38342694 DOI: 10.1002/smll.202310099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 01/16/2024] [Indexed: 02/13/2024]
Abstract
Metal telluride (MTe)-based nanomaterials have emerged as a potential alternative for efficient, highly conductive, robust, and durable electrodes in energy storage/conversion applications. Significant progress in the material development of MTe-based electrodes is well-sought, from the synthesis of its nanostructures, integration of MTes with supporting materials, synthesis of their hybrid morphologies, and their implications in energy storage/conversion systems. Herein, an extensive exploration of the recent advancements and progress in MTes-based nanomaterials is reviewed. This review emphasizes elucidating the fundamental properties of MTes and providing a systematic compilation of its wet and dry synthesis methods. The applications of MTes are extensively summarized and discussed, particularly, in energy storage and conversion systems including batteries (Li-ion, Zn-ion, Li-S, Na-ion, K-ion), supercapacitor, hydrogen evolution reaction (HER), oxygen evolution reaction (OER), oxygen reduction reaction (ORR), and CO2 reduction. The review also emphasizes the future prospects and urgent challenges to be addressed in the development of MTes, providing knowledge for researchers in utilizing MTes in energy storage and conversion technologies.
Collapse
Affiliation(s)
- Muhammad Ahmad
- Department of Mechanical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Kowloon 999077, Hong Kong
| | - Tehseen Nawaz
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong
| | - Iftikhar Hussain
- Department of Mechanical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Kowloon 999077, Hong Kong
- Hong Kong Branch of Chinese National Engineering Research Centre (CNERC) for National Precious Metals Material (NPMM), Kowloon 999077, Hong Kong
| | - Faiza Meharban
- Material College, Donghua University, 2999 Renmin North Road, Songjiang, Shanghai, China
| | - Xi Chen
- Department of Mechanical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Kowloon 999077, Hong Kong
| | - Shahid Ali Khan
- Department of Mechanical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Kowloon 999077, Hong Kong
| | - Sarmad Iqbal
- Department of Energy Conversion and Storage Technical University of Denmark (DTU), Building 310, Fysikvej, Lyngby, DK-2800, Denmark
| | - P Rosaiah
- Department of Physics, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Thandalam, Chennai, 602 105, India
| | - Mohd Zahid Ansari
- School of Materials Science and Engineering, Yeungnam University, Gyeongsan, 38541, Republic of Korea
| | - Wail Al Zoubi
- School of Materials Science and Engineering, Yeungnam University, Gyeongsan, 38541, Republic of Korea
| | - Kaili Zhang
- Department of Mechanical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Kowloon 999077, Hong Kong
- Hong Kong Branch of Chinese National Engineering Research Centre (CNERC) for National Precious Metals Material (NPMM), Kowloon 999077, Hong Kong
| |
Collapse
|
2
|
Li J, Zhang L, Xin W, Yang M, Peng H, Geng Y, Yang L, Yan Z, Zhu Z. Rationally Designed ZnTe@C Nanowires with Superior Zinc Storage Performance for Aqueous Zn Batteries. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2304916. [PMID: 37452436 DOI: 10.1002/smll.202304916] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Indexed: 07/18/2023]
Abstract
Te-based materials with excellent electrical conductivity and ultra-high volume specific capacity have attracted much attention for the cost-efficient aqueous Zn batteries. However, the construction of functional structures with mild volume expansion and suppressed shuttle effects, enabling an expanded lifespan, is still a challenge for conversion-type materials. Herein, the carbon-coated zinc telluride nanowires (ZnTe@C NWs) are rationally designed as a high-performance cathode material for aqueous Zn batteries. The carbon-coated1D nanostructure could not only provide optimized transmission path for electrons and ions, but also help to maintain structure integrity upon volume variation and suppress intermediates dissolution, endowing the ZnTe@C NWs with improved cycling stability and reaction kinetics. Consequently, a reversible six-electron reaction mechanism of ZnTe@C NWs based on Te2- /Te4+ conversion with excellent output capacity (586 mAh g-1 at 0.1 A g-1 ) and lifespan (>250 mAh g-1 retained for 400 cycles at 1 A g-1 ) is eventually achieved.
Collapse
Affiliation(s)
- Junwei Li
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Lei Zhang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Wenli Xin
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Min Yang
- School of Chemistry, Xiangtan University, Xiangtan, 411105, China
| | - Huiling Peng
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Yaheng Geng
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Li Yang
- Hunan Provincial Key Laboratory of Advanced Materials for New Energy Storage and Conversion, Hunan University of Science and Technology, Xiangtan, 411201, China
| | - Zichao Yan
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Zhiqiang Zhu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| |
Collapse
|
3
|
Kim JS, Heo SW, Lee SY, Lim JM, Choi S, Kim SW, Mane VJ, Kim C, Park H, Noh YT, Choi S, van der Laan T, Ostrikov KK, Park SJ, Doo SG, Han Seo D. Utilization of 2D materials in aqueous zinc ion batteries for safe energy storage devices. NANOSCALE 2023; 15:17270-17312. [PMID: 37869772 DOI: 10.1039/d3nr03468b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2023]
Abstract
Aqueous rechargeable battery has been an intense topic of research recently due to the significant safety issues of conventional Li-ion batteries (LIBs). Amongst the various candidates of aqueous batteries, aqueous zinc ion batteries (AZIBs) hold great promise as a next generation safe energy storage device due to its low cost, abundance in nature, low toxicity, environmental friendliness, low redox potential, and high theoretical capacity. Yet, the promise has not been realized due to their limitations, such as lower capacity compared to traditional LIB, dendrite growth, detrimental degradation of electrode materials structure as ions intercalate/de-intercalate, and gas evolution/corrosion at the electrodes, which remains a significant challenge. To address the challenges, various 2D materials with different physiochemical characteristics have been utilized. This review explores fundamental physiochemical characteristics of widely used 2D materials in AZIBs, including graphene, MoS2, MXenes, 2D metal organic framework, 2D covalent organic framework, and 2D transition metal oxides, and how their characteristics have been utilized or modified to address the challenges in AZIBs. The review also provides insights and perspectives on how 2D materials can help to realize the full potential of AZIBs for next-generation safe and reliable energy storage devices.
Collapse
Affiliation(s)
- Jun Sub Kim
- Energy Materials & Devices, Department of Energy Engineering, Korea Institute of Energy Technology (KENTECH), Naju-si (58217), Jeollanam-do, Republic of Korea.
| | - Seong-Wook Heo
- Energy Materials & Devices, Department of Energy Engineering, Korea Institute of Energy Technology (KENTECH), Naju-si (58217), Jeollanam-do, Republic of Korea.
| | - So Young Lee
- Energy Materials & Devices, Department of Energy Engineering, Korea Institute of Energy Technology (KENTECH), Naju-si (58217), Jeollanam-do, Republic of Korea.
| | - Jae Muk Lim
- Energy Materials & Devices, Department of Energy Engineering, Korea Institute of Energy Technology (KENTECH), Naju-si (58217), Jeollanam-do, Republic of Korea.
| | - Seonwoo Choi
- Energy Materials & Devices, Department of Energy Engineering, Korea Institute of Energy Technology (KENTECH), Naju-si (58217), Jeollanam-do, Republic of Korea.
| | - Sun-Woo Kim
- Energy Materials & Devices, Department of Energy Engineering, Korea Institute of Energy Technology (KENTECH), Naju-si (58217), Jeollanam-do, Republic of Korea.
- The School of Advanced Materials Science and Engineering, SungKyunKwan University, Seobu-ro, Jangan-gu, Suwon-si 2066, Gyeonggi-do, Korea
| | - Vikas J Mane
- Energy Materials & Devices, Department of Energy Engineering, Korea Institute of Energy Technology (KENTECH), Naju-si (58217), Jeollanam-do, Republic of Korea.
| | - Changheon Kim
- Green Energy Institute, Mokpo-Si, Jeollanam-do 58656, Republic of Korea.
- AI & Energy Research Center, Korea Photonics Technology Institute, South Korea
| | - Hyungmin Park
- Korea Conformity Laboratories, Gwangju-Jeonnam Center, Yeosu, 59631, Republic of Korea
| | - Young Tai Noh
- Korea Conformity Laboratories, Gwangju-Jeonnam Center, Yeosu, 59631, Republic of Korea
| | - Sinho Choi
- Ulsan Advanced Energy Technology R&D Center, Korea Institute of Energy Research (KIER), Ulsan 44776, Republic of Korea
| | | | - Kostya Ken Ostrikov
- School of Chemistry and Physics and QUT Centre for Materials Science, Queensland University of Technology (QUT), Brisbane, Queensland 4000, Australia
| | - Seong-Ju Park
- Energy Materials & Devices, Department of Energy Engineering, Korea Institute of Energy Technology (KENTECH), Naju-si (58217), Jeollanam-do, Republic of Korea.
| | - Seok Gwang Doo
- Energy Materials & Devices, Department of Energy Engineering, Korea Institute of Energy Technology (KENTECH), Naju-si (58217), Jeollanam-do, Republic of Korea.
| | - Dong Han Seo
- Energy Materials & Devices, Department of Energy Engineering, Korea Institute of Energy Technology (KENTECH), Naju-si (58217), Jeollanam-do, Republic of Korea.
| |
Collapse
|
4
|
Li W, Wang D. Conversion-Type Cathode Materials for Aqueous Zn Metal Batteries in Nonalkaline Aqueous Electrolytes: Progress, Challenges, and Solutions. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023:e2304983. [PMID: 37467467 DOI: 10.1002/adma.202304983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 07/04/2023] [Accepted: 07/18/2023] [Indexed: 07/21/2023]
Abstract
Aqueous Zn metal batteries are attractive as safe and low-cost energy storage systems. At present, due to the narrow window of the aqueous electrolyte and the strong reliance of the Zn2+ ion intercalated reaction on the host structure, the current intercalated cathode materials exhibit restricted energy densities. In contrast, cathode materials with conversion reactions can promise higher energy densities. Especially, the recently reported conversion-type cathode materials that function in nonalkaline electrolytes have garnered increasing attention. This is because the use of nonalkaline electrolytes can prevent the occurrence of side reactions encountered in alkaline electrolytes and thereby enhance cycling stability. However, there is a lack of comprehensive review on the reaction mechanisms, progress, challenges, and solutions to these cathode materials. In this review, four kinds of conversion-type cathode materials including MnO2 , halogen materials (Br2 and I2 ), chalcogenide materials (O2 , S, Se, and Te), and Cu-based compounds (CuI, Cu2 O, Cu2 S, CuO, CuS, and CuSe) are reviewed. First, the reaction mechanisms and battery structures of these materials are introduced. Second, the fundamental problems and their corresponding solutions are discussed in detail in each material. Finally, future directions and efforts for the development of conversion-type cathode materials for aqueous Zn batteries are proposed.
Collapse
Affiliation(s)
- Wei Li
- School of Resource and Environmental Science, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Wuhan University, Wuhan, 430072, China
| | - Dihua Wang
- School of Resource and Environmental Science, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Wuhan University, Wuhan, 430072, China
| |
Collapse
|