1
|
Zeng LH, Cui R, Huang Z, Zhang QW. Ni(II)-catalyzed nucleophilic substitution for the synthesis of allenylselenide. Chem Commun (Camb) 2024. [PMID: 39693109 DOI: 10.1039/d4cc05065g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2024]
Abstract
A method for synthesizing allenylselenides has been developed using readily available propargyl carbonate and phenylselenol. The reaction is catalyzed by Ni(II) and proceeds via a migratory insertion and β-oxygen elimination mechanism. Due to the strong interaction between Se and Ni leading to catalyst deactivation, zinc salt was used to mitigate the deleterious effects of Se anions on the catalyst, thereby facilitating the successful synthesis of the target products.
Collapse
Affiliation(s)
- Ling-Hong Zeng
- Key Laboratory of Precision and Intelligent Chemistry, Department of Chemistry, University of Science and Technology of China, Hefei 230026, China.
| | - Ranran Cui
- Key Laboratory of Precision and Intelligent Chemistry, Department of Chemistry, University of Science and Technology of China, Hefei 230026, China.
| | - Zhuo Huang
- Key Laboratory of Precision and Intelligent Chemistry, Department of Chemistry, University of Science and Technology of China, Hefei 230026, China.
| | - Qing-Wei Zhang
- Key Laboratory of Precision and Intelligent Chemistry, Department of Chemistry, University of Science and Technology of China, Hefei 230026, China.
| |
Collapse
|
2
|
Bai X, Chen J, Du H, Zhao C, Li Y, Li Y, Dixneuf PH, Zhang M, Chen L. Silver-Mediated Acetoxyselenylation of Alkynes: Mild Stereoselective Access to Bifunctional Alkenes. Org Lett 2024. [PMID: 39535246 DOI: 10.1021/acs.orglett.4c03178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Herein, we report a AgF-mediated regio- and stereoselective acetoxyselenylation of terminal/internal alkynes from iodobenzene dicarboxylate [PhI(OCOR)2] and diorganyl diselenides via multiple-site functionalization to afford β-selenyl enol esters in good yields. Alkynes derived from bioactive molecules, such as l(-)-borneol, l-menthol, and acyne oxalate, are also suitable for this transformation and afford the expected compounds.
Collapse
Affiliation(s)
- Xiaoyan Bai
- School of Environmental and Chemical Engineering, Wuyi University, Jiangmen, Guangdong 529020, People's Republic of China
| | - Jiabin Chen
- School of Environmental and Chemical Engineering, Wuyi University, Jiangmen, Guangdong 529020, People's Republic of China
| | - Hongxuan Du
- School of Environmental and Chemical Engineering, Wuyi University, Jiangmen, Guangdong 529020, People's Republic of China
| | - Cong Zhao
- School of Environmental and Chemical Engineering, Wuyi University, Jiangmen, Guangdong 529020, People's Republic of China
| | - Ya Li
- School of Environmental and Chemical Engineering, Wuyi University, Jiangmen, Guangdong 529020, People's Republic of China
| | - Yibiao Li
- School of Environmental and Chemical Engineering, Wuyi University, Jiangmen, Guangdong 529020, People's Republic of China
| | | | - Min Zhang
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, 381 Wushan Road, Guangzhou, Guangdong 510641, People's Republic of China
| | - Lu Chen
- School of Environmental and Chemical Engineering, Wuyi University, Jiangmen, Guangdong 529020, People's Republic of China
| |
Collapse
|
3
|
He X, Fu Y, Xi R, Zhang C, Lan K, Su Z, Wang F, Feng X, Liu X. Asymmetric Carbene Insertion into Se-S Bonds by Synergistic Rh(II)/Guanidine Catalysis Involving Chalcogen-Bond Assistance. Angew Chem Int Ed Engl 2024:e202417636. [PMID: 39487093 DOI: 10.1002/anie.202417636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 10/30/2024] [Accepted: 11/01/2024] [Indexed: 11/04/2024]
Abstract
The efficient construction of chalcogen-atom-based chiral compounds remains a challenge, despite the importance of organoselenium and organosulfur compounds in life and materials science. Chalcogen atoms can form net attractive interactions called chalcogen bonds, but it is an undeveloped tool to assist asymmetric catalysis. Herein, we report an enantioselective insertion platform to install a stereogenic center bearing selenyl and thiocyano functional groups. Our method operates by synergistic catalysis by a chiral guanidine and an achiral dirhodium complex in a three-component or four-component reaction, through Se-S bond insertion into carbene species, competing successfully with the spontaneous racemic process and showing high regioselectivity. As elucidated by spectroscopic experiments and computational studies, a unique mechanism involving chalcogen as well as hydrogen bonding was established to account for the enantiocontrol. The high stereoselectivity holds for a broad array of selenylthiocyanatopropanoates, which showed excellent anti-inflammatory toward IL-1β and low cytotoxicity.
Collapse
Affiliation(s)
- Xin He
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610064, China
| | - Yihua Fu
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610064, China
| | - Ruiying Xi
- Center for Natural Products Research, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610064, China
| | - Cefei Zhang
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610064, China
| | - Kexin Lan
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610064, China
| | - Zhishan Su
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610064, China
| | - Fei Wang
- Center for Natural Products Research, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610064, China
| | - Xiaoming Feng
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610064, China
| | - Xiaohua Liu
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610064, China
| |
Collapse
|
4
|
Althikrallah HA, Shaaban S, Elmaaty AA, Ba-Ghazal H, Almarri MN, Sharaky M, Alnajjar R, Al-Karmalawy AA. Investigating the anti-inflammatory potential of N-amidic acid organoselenium candidates: biological assessments, molecular docking, and molecular dynamics simulations. RSC Adv 2024; 14:31990-32000. [PMID: 39391620 PMCID: PMC11463133 DOI: 10.1039/d4ra04762a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 10/01/2024] [Indexed: 10/12/2024] Open
Abstract
Inflammation is a complex process with many contributing factors, and it often causes pain. The pathophysiology of pain involves the release of inflammatory mediators that initiate pain sensation, as well as edema and other inflammation hallmarks. Selenium-containing compounds (OSe) are very promising for developing new medicines because they can treat many different diseases. In this study, we estimated the anti-inflammatory properties of maleanilic and succinanilic acids containing selenium (OSe). These molecules were designed by combining different strategies to enhance their anti-inflammatory properties. Hence, the anti-inflammatory impacts of compounds 8, 9, 10, and 11 were pursued using inflammatory markers COX-2, IL-1β, and IL-6. Notably, it was revealed that compounds 8, 9, 10, and 11 downregulated COX-2, IL-1β, and IL-6 by (2.01, 1.63, 2.26, and 2.05), (1.42, 1.64, 1.93, and 2.59), and (1.67, 2.54, 2.22, and 4.06)-fold changes, respectively. Moreover, molecular docking studies were conducted on compounds 8, 9, 10, and 11 to pursue their binding affinities for the COX-2 enzyme. Notably, very promising binding scores of compounds 8, 9, 10, and 11 towards the binding site of the COX-2 receptor were attained. Additionally, more accurate molecular dynamics simulations were performed for 200 ns for the docked complexes of compounds 8, 9, 10, and 11 to confirm the molecular docking findings, which ignore the protein's flexibility. Therefore, the exact stability of the N-amidic acids OSe compounds 8, 9, 10, and 11 towards the binding pocket of the COX-2 enzyme was examined and explained as well. Also, the MM-GBSA binding energy was calculated for equilibrated MD trajectory, and 200 snapshots were selected with a 50 ps interval for further analysis. Accordingly, the investigated compounds can be treated as prominent lead anti-inflammatory candidates for further optimization.
Collapse
Affiliation(s)
- Hanan A Althikrallah
- Department of Chemistry, College of Science, King Faisal University Al-Ahsa 31982 Saudi Arabia
| | - Saad Shaaban
- Department of Chemistry, College of Science, King Faisal University Al-Ahsa 31982 Saudi Arabia
- Department of Chemistry, Faculty of Science, Mansoura University 35516 Mansoura Egypt
| | - Ayman Abo Elmaaty
- Medicinal Chemistry Department, Faculty of Pharmacy, Port Said University Port Said 42511 Egypt
| | - Hussein Ba-Ghazal
- Department of Chemistry, College of Science, King Faisal University Al-Ahsa 31982 Saudi Arabia
| | - Mohammed N Almarri
- Department of Chemistry, College of Science, King Faisal University Al-Ahsa 31982 Saudi Arabia
| | - Marwa Sharaky
- Cancer Biology Department, Pharmacology Unit, National Cancer Institute (NCI), Cairo University Cairo Egypt
| | - Radwan Alnajjar
- CADD Unit, Faculty of Pharmacy, Libyan International Medical University Benghazi Libya
| | - Ahmed A Al-Karmalawy
- Department of Pharmaceutical Chemistry, College of Pharmacy, The University of Mashreq Baghdad 10023 Iraq
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Horus University-Egypt New Damietta 34518 Egypt
| |
Collapse
|
5
|
do Sacramento M, Morais RB, Silveira Lima A, Zugno GP, de Oliveira RL, da Costa GP, Savegnago L, Alves D. Selenylated Analogs of Tacrine: Synthesis, In Silico and In Vitro Studies of Toxicology and Antioxidant Properties. Chem Asian J 2024; 19:e202400637. [PMID: 38985241 DOI: 10.1002/asia.202400637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/09/2024] [Accepted: 07/10/2024] [Indexed: 07/11/2024]
Abstract
We present our results on the synthesis and preliminary in silico and in vitro studies of the toxicology and antioxidant properties of selenylated analogs of Tacrine. Initially, we synthesized 2-aminobenzonitriles containing an organic selenium moiety, resulting in sixteen compounds with various substituents linked to the portion derived from diorganyl diselenide. These compounds were then used as substrates in reactions with cyclic ketones, in the presence of 1.4 equivalents of trifluoroboroetherate as a Lewis acid, to synthesize selenylated analogs of Tacrine with yields ranging from 20 % to 87 %. In silico studies explored computational parameters related to antioxidant activity and hepatotoxicity. In vitro studies elucidated the antioxidant effects of Tacrine and its selenium hybrid (TSe) in neutralizing ABTS radicals, scavenging DPPH radicals, and reducing iron ions. Additionally, the acute oral toxicity of one synthesized compound was evaluated.
Collapse
Affiliation(s)
- Manoela do Sacramento
- LASOL-CCQFA, Universidade Federal de Pelotas - UFPel, P.O. Box 354, 96010-900, Pelotas, RS, Brazil
| | - Roberto B Morais
- LASOL-CCQFA, Universidade Federal de Pelotas - UFPel, P.O. Box 354, 96010-900, Pelotas, RS, Brazil
| | - Ariana Silveira Lima
- LASOL-CCQFA, Universidade Federal de Pelotas - UFPel, P.O. Box 354, 96010-900, Pelotas, RS, Brazil
| | - Giuliana P Zugno
- Neurobiotechnology Research Group - GPN, Technological Development Center, Federal University of Pelotas - UFPel, Pelotas, RS, 96160-000, Brazil
| | - Renata L de Oliveira
- Neurobiotechnology Research Group - GPN, Technological Development Center, Federal University of Pelotas - UFPel, Pelotas, RS, 96160-000, Brazil
| | - Gabriel P da Costa
- LASOL-CCQFA, Universidade Federal de Pelotas - UFPel, P.O. Box 354, 96010-900, Pelotas, RS, Brazil
| | - Lucielli Savegnago
- Neurobiotechnology Research Group - GPN, Technological Development Center, Federal University of Pelotas - UFPel, Pelotas, RS, 96160-000, Brazil
| | - Diego Alves
- LASOL-CCQFA, Universidade Federal de Pelotas - UFPel, P.O. Box 354, 96010-900, Pelotas, RS, Brazil
| |
Collapse
|
6
|
Queder J, Hilt G. Electrochemical Nickel-Catalyzed Synthesis of Unsymmetrical Diorganyl Selanes from Diaryl Diselanes and Aryl and Alkyl Iodides. Molecules 2024; 29:4669. [PMID: 39407598 PMCID: PMC11477634 DOI: 10.3390/molecules29194669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 09/10/2024] [Accepted: 09/26/2024] [Indexed: 10/20/2024] Open
Abstract
The synthesis of unsymmetrical diorganyl selanes was accomplished under electrochemical conditions in an undivided cell utilizing a magnesium cathode and a carbon anode made out of aryl and alkyl iodides and diselanes. This electrochemical cross-electrophile coupling (eXEC) was accomplished using a simple nickel catalyst formed in situ out of Ni(acac)2 and 2,2'-bipyridine in DMF at ambient temperatures. The reaction showed good functional group compatibility, and heteroaryl iodides, such as thiophene or pyridine derivatives, were well accepted.
Collapse
Affiliation(s)
| | - Gerhard Hilt
- Institute of Chemistry, Oldenburg University, Carl-von-Ossietzky-Str. 9-11, 26129 Oldenburg, Germany;
| |
Collapse
|
7
|
Ren ML, Gong XR, Chen YY, Xu YL. Visible-light-promoted selenylation/cyclization of o-(1-alkynyl) benzoates to access seleno-substituted isocoumarins. Org Biomol Chem 2024; 22:7327-7331. [PMID: 39175396 DOI: 10.1039/d4ob01010h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2024]
Abstract
A simple and efficient method to access 4-selenyl-isocoumarin derivatives through visible-light-promoted selenylation/cyclization of o-(1-alkynyl) benzoates has been developed. This transformation is performed under mild conditions and has the advantages of functional group tolerance and broad substrate scope.
Collapse
Affiliation(s)
- Mei-Lin Ren
- Guangxi Key Laboratory of Drug Discovery and Optimization, Guangxi Engineering Research Center for Pharmaceutical Molecular Screening and Druggability Evaluation, Key Laboratory of Medical Biotechnology and Translational Medicine, School of Pharmacy, Guilin Medical University, Guilin 541199, Guangxi, China..
| | - Xi-Rui Gong
- Guangxi Key Laboratory of Drug Discovery and Optimization, Guangxi Engineering Research Center for Pharmaceutical Molecular Screening and Druggability Evaluation, Key Laboratory of Medical Biotechnology and Translational Medicine, School of Pharmacy, Guilin Medical University, Guilin 541199, Guangxi, China..
| | - Yan-Yan Chen
- Guangxi Key Laboratory of Drug Discovery and Optimization, Guangxi Engineering Research Center for Pharmaceutical Molecular Screening and Druggability Evaluation, Key Laboratory of Medical Biotechnology and Translational Medicine, School of Pharmacy, Guilin Medical University, Guilin 541199, Guangxi, China..
| | - Yan-Li Xu
- Guangxi Key Laboratory of Drug Discovery and Optimization, Guangxi Engineering Research Center for Pharmaceutical Molecular Screening and Druggability Evaluation, Key Laboratory of Medical Biotechnology and Translational Medicine, School of Pharmacy, Guilin Medical University, Guilin 541199, Guangxi, China..
| |
Collapse
|
8
|
Gallo-Rodriguez C, Rodriguez JB. Organoselenium Compounds in Medicinal Chemistry. ChemMedChem 2024; 19:e202400063. [PMID: 38778500 DOI: 10.1002/cmdc.202400063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 05/09/2024] [Accepted: 05/22/2024] [Indexed: 05/25/2024]
Abstract
The chemical and biological interest in this element and the molecules bearing selenium has been exponentially growing over the years. Selenium, formerly designated as a toxin, becomes a vital trace element for life that appears as selenocysteine and its dimeric form, selenocystine, in the active sites of selenoproteins, which catalyze a wide variety of reactions, including the detoxification of reactive oxygen species and modulation of redox activities. From the point of view of drug developments, organoselenium drugs are isosteres of sulfur-containing and oxygen-containing drugs with the advantage that the presence of the selenium atom confers antioxidant properties and high lipophilicity, which would increase cell membrane permeation leading to better oral bioavailability. This statement is the paramount relevance considering the big number of clinically employed compounds bearing sulfur or oxygen atoms in their structures including nucleosides and carbohydrates. Thus, in this article we have focused on the relevant features of the application of selenium in medicinal chemistry. With the increasing interest in selenium chemistry, we have attempted to highlight the most significant published data on this subject, mainly concentrating the analysis on the last years. In consequence, the recent advances of relevant pharmacological organoselenium compounds are discussed.
Collapse
Affiliation(s)
- Carola Gallo-Rodriguez
- Departamento de Química Orgánica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón 2, C1428EHA, Buenos Aires, Argentina
- CONICET-Universidad de Buenos Aires, Centro de Investigaciones en Hidratos de Carbono (CIHIDECAR), C1428EHA, Buenos Aires, Argentina
| | - Juan B Rodriguez
- Departamento de Química Orgánica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón 2, C1428EHA, Buenos Aires, Argentina
- CONICET-Universidad de Buenos Aires, Unidad de Microanálisis y Métodos Físicos en Química Orgánica (UMYMFOR), C1428EHA, Buenos, Aires, Argentina
- CONICET-Universidad de Buenos Aires, Centro de Investigaciones en Hidratos de Carbono (CIHIDECAR), C1428EHA, Buenos Aires, Argentina
| |
Collapse
|
9
|
Kostić M, Marjanović J, Divac V. Organoselenium transition metal complexes as promising candidates in medicine area. J Biol Inorg Chem 2024; 29:555-571. [PMID: 39123093 DOI: 10.1007/s00775-024-02072-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 08/02/2024] [Indexed: 08/12/2024]
Abstract
The medicinal properties of transition metal complexes are greatly influenced by the nature and physico-chemical features of the ligand present in the complex structure. Due to the unique biological properties of the organoselenium compounds reflected in the variety of pharmacological activities (such as antioxidative, antiviral, antimicrobial and anticancer), the last years have brought increased interest for their use as a ligands compounds in the design and syntheses of range of transition metal-based coordination compounds that have been explored as antitumor and antimicrobial agents. Our aim in this review is to provide the overview of an recent development of the transition metal complexes bearing organoselenium ligands in the structure that could be promising choice for the treatment of various diseases, particularly cancer and infective diseases. For this purpose, the complexes of Co, Ni, Cu, Zn, Ru, Pd, Pt, Au and Sn as the most explored examples will be included and discussed.
Collapse
Affiliation(s)
- Marina Kostić
- Institute for Information Technologies, University of Kragujevac, Jovana Cvijića bb, 34000, Kragujevac, Serbia.
| | - Jovana Marjanović
- Faculty of Science, University of Kragujevac, Radoja Domanovića 12, 34000, Kragujevac, Serbia
| | - Vera Divac
- Faculty of Science, University of Kragujevac, Radoja Domanovića 12, 34000, Kragujevac, Serbia
| |
Collapse
|
10
|
Wan Y, Li C, Lin Z, Lin X, Gao H, Yi W, Zhou Z. Assembly of Selenadiazine Scaffolds via Rh(III)-Catalyzed Amidine-Directed Cascade C-H Selenylation/[5 + 1] Annulation with Elemental Selenium. Org Lett 2024; 26:6625-6630. [PMID: 39087791 DOI: 10.1021/acs.orglett.4c02262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2024]
Abstract
By employing elemental selenium as the selenium source, we have realized the amidine-directed Rh(III)-catalyzed cascade C-H selenylation/[5 + 1] annulation for the direct construction of structurally novel selenadiazine, benzoselenadiazine, and benzoselenazol-3-amine frameworks with specific site selectivity and good functional group tolerance. Besides, the obtained products can serve as fundamental platforms for subsequent chemical transformations, and thus, the feasible SeNEx reaction, SeNEx/Michael addition, and simple conversion of the selenadiazine product into diverse other organoselenium molecules were demonstrated accordingly. Taken together, the developed methodology efficiently expands the chemical space of organoselenium species.
Collapse
Affiliation(s)
- Yuyan Wan
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 511436, China
| | - Chensi Li
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 511436, China
| | - Zhensheng Lin
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 511436, China
| | - Xinyue Lin
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 511436, China
| | - Hui Gao
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 511436, China
| | - Wei Yi
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 511436, China
| | - Zhi Zhou
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 511436, China
| |
Collapse
|
11
|
Purohit S, Rana R, Tyagi A, Bahuguna A, Oswal P, Anshika, Kumar A. Organosulphur and organoselenium compounds as ligands for catalytic systems in the Sonogashira coupling. Org Biomol Chem 2024; 22:6215-6245. [PMID: 38873754 DOI: 10.1039/d4ob00552j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2024]
Abstract
Sonogashira coupling is a reaction of aryl/vinyl halides with terminal alkynes. It is used for the synthesis of conjugated enynes. Generally, copper (Cu) is required as a mediator for this reaction. It requires a long reaction time, high catalyst loading, or expensive ligands. Recently, homogeneous, heterogeneous, and nanocatalysts have been developed using organosulphur and organoselenium compounds as building blocks. Preformed complexes of metals with organosulphur and organoselenium ligands are used for homogeneous catalysis. Heterogeneous catalytic systems have also been developed using Cu, Pd, and Ni as metals. The nanocatalytic systems (synthesized using such ligands) include copper selenides and stabilized palladium(0) nanospecies. This article aims to cover the developments in the field of the processes and techniques used so far to generate catalytically relevant organic ligands having sulphur or selenium donor sites, the utility of such ligands in the syntheses of homogeneous, heterogeneous, and nanocatalytic systems, and critical analysis of their application in the catalysis of this coupling reaction. The results of catalysis are analyzed in terms of the effects of the S/Se donor, halogen atom of aryl halide, the effect of the presence/absence of electron-withdrawing or electron-donating groups or substituents on the aromatic ring of haloarenes/substituted phenylacetylenes, as well as the position (ortho or para) of the substitution. Substrate scope is discussed for all the kinds of catalysis. The supremacy of heterogeneous and nanocatalytic systems indicates promising future prospects.
Collapse
Affiliation(s)
- Suraj Purohit
- Department of Chemistry, School of Physical Sciences, Doon University, Dehradun, 248001, India.
| | - Ramakshi Rana
- Department of Chemistry, School of Physical Sciences, Doon University, Dehradun, 248001, India.
| | - Anupma Tyagi
- Department of Chemistry, School of Physical Sciences, Doon University, Dehradun, 248001, India.
| | - Anurag Bahuguna
- Department of Chemistry, School of Physical Sciences, Doon University, Dehradun, 248001, India.
| | - Preeti Oswal
- Department of Chemistry, Texas A&M University, College Station, 77842-3012, USA
| | - Anshika
- Department of Chemistry, School of Physical Sciences, Doon University, Dehradun, 248001, India.
| | - Arun Kumar
- Department of Chemistry, School of Physical Sciences, Doon University, Dehradun, 248001, India.
| |
Collapse
|
12
|
Jian Y, Singh T, Andersson PG, Zhou T. Asymmetric Synthesis and Applications of Chiral Organoselenium Compounds: A Review. Molecules 2024; 29:3685. [PMID: 39125088 PMCID: PMC11314500 DOI: 10.3390/molecules29153685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 07/18/2024] [Accepted: 07/31/2024] [Indexed: 08/12/2024] Open
Abstract
The synthesis and application of organoselenium compounds have developed rapidly, and chiral organoselenium compounds have become an important intermediate in the field of medicine, materials, organic synthesis. The strategy of developing a green economy is still a challenge in the synthesis of chiral organoselenium compounds with enantioselective properties. This review covers in detail the synthesis of chiral organoselenium compounds from 1979 to 2024 and their application in the fields of asymmetric synthesis and catalysis.
Collapse
Affiliation(s)
- Yanyu Jian
- College of Chemistry and Chemical Engineering, & Institute for Carbon Neutrality, Southwest Petroleum University, Chengdu 610500, China;
| | - Thishana Singh
- School of Chemistry and Physics, University of KwaZulu-Natal, Private Bag X54001, Durban 4000, South Africa;
| | - Pher G. Andersson
- School of Chemistry and Physics, University of KwaZulu-Natal, Private Bag X54001, Durban 4000, South Africa;
- Department of Organic Chemistry, Stockholm University, Svante Arrhenius väg 16C, 10691 Stockholm, Sweden
| | - Taigang Zhou
- College of Chemistry and Chemical Engineering, & Institute for Carbon Neutrality, Southwest Petroleum University, Chengdu 610500, China;
- Tianfu Yongxing Laboratory, Chengdu 610213, China
| |
Collapse
|
13
|
Castro-Godoy WD, Heredia AA, Bouchet LM, Argüello JE. Synthesis of Selenium Derivatives using Organic Selenocyanates as Masked Selenols: Chemical Reduction with Rongalite as a Simpler Tool to give Nucleophilic Selenides. Chempluschem 2024; 89:e202400183. [PMID: 38648466 DOI: 10.1002/cplu.202400183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 04/10/2024] [Accepted: 04/22/2024] [Indexed: 04/25/2024]
Abstract
The chemical reduction within a family of organic selenocyanates, as masked selenols, using reducing agents, such as Rongalite, sodium dithionite, and sodium thiosulfate is investigated. Using Rongalite, the corresponding diselenides were obtained quantitatively and selectively in very good to excellent yields (51-100 %) starting from alkyl, aryl, and benzyl selenocyanates. The scope of the reaction is unaffected by the electronic nature of the substituents. Furthermore, the reducing agent, Rongalite, is compatible with hydrolysable and reducing-sensitive functional groups. Additionally, a simple methodology employing the in-situ generated benzyl selenolate anion (PhCH2Se-) to promote aliphatic nucleophilic substitution, epoxide ring opening, and Michael addition reactions has been developed; thus, extending the structural diversity of the synthesized selenium derivatives.
Collapse
Affiliation(s)
- Willber D Castro-Godoy
- Dpto. de Química, Física y Matemática, Facultad de Química y Farmacia, Universidad de El Salvador, Final Av. de Mártires y Héroes del 30 de Julio, San, Salvador, 1101, El Salvador
| | - Adrián A Heredia
- INFIQC-CONICET-UNC, Dpto. de Química Orgánica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, X5000HUA, Córdoba, Argentina
| | - Lydia M Bouchet
- INFIQC-CONICET-UNC, Dpto. de Química Orgánica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, X5000HUA, Córdoba, Argentina
| | - Juan E Argüello
- INFIQC-CONICET-UNC, Dpto. de Química Orgánica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, X5000HUA, Córdoba, Argentina
| |
Collapse
|
14
|
Qi C, Lu Z, Gu Y, Bao X, Xiong B, Liu GQ. Zn(OTf) 2-catalyzed intra- and intermolecular selenofunctionalization of alkenes under mild conditions. RSC Adv 2024; 14:23147-23151. [PMID: 39040696 PMCID: PMC11262084 DOI: 10.1039/d4ra04266b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 07/17/2024] [Indexed: 07/24/2024] Open
Abstract
Zn(OTf)2-catalyzed intra- and intermolecular selenofunctionalization of alkenes was achieved with electrophilic N-phenylselenophthalimide. This method provides straightforward and efficient access to various seleno-substituted heterocycles and vicinal Se heteroatom-disubstituted molecules under mild conditions. This reaction is compatible with various substrates/functional groups, and preliminary studies on the reaction mechanistic were also conducted.
Collapse
Affiliation(s)
- Cong Qi
- School of Pharmacy, Nantong Key Laboratory of Small Molecular Drug Innovation, Nantong University Nantong 226019 People's Republic of China
| | - Zhaogong Lu
- School of Pharmacy, Nantong Key Laboratory of Small Molecular Drug Innovation, Nantong University Nantong 226019 People's Republic of China
| | - Yuyang Gu
- School of Medicine, Nantong University Nantong 226019 People's Republic of China
| | - Xiaofeng Bao
- School of Pharmacy, Nantong Key Laboratory of Small Molecular Drug Innovation, Nantong University Nantong 226019 People's Republic of China
| | - Biao Xiong
- School of Pharmacy, Nantong Key Laboratory of Small Molecular Drug Innovation, Nantong University Nantong 226019 People's Republic of China
| | - Gong-Qing Liu
- School of Pharmacy, Nantong Key Laboratory of Small Molecular Drug Innovation, Nantong University Nantong 226019 People's Republic of China
| |
Collapse
|
15
|
Irgashev RA, Steparuk AS. A general approach to construct selenopheno[3,2- b]indole-cored molecules using Fischer indolization. Org Biomol Chem 2024. [PMID: 39016603 DOI: 10.1039/d4ob00788c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2024]
Abstract
A wide series of various selenopheno[3,2-b]indole-based compounds, including 2-aryl-substituted selenopheno[3,2-b]indoles as well as derivatives of benzo[4,5]selenopheno[3,2-b]indole, pyrido[3',2':4,5]selenopheno[3,2-b]indole, pyrazino[2',3':4,5]selenopheno[3,2-b]indole and chromeno[3',4':4,5]selenopheno[3,2-b]indol-6-one, were prepared from the appropriate 3-aminoselenophen-2-carboxylates via a one-pot two-step procedure based on the Fischer indole synthesis. The present synthetic strategy includes the conversion of 3-aminoselenophen-2-carboxylates into 2-unsubstituted 3-aminoselenophenes, their C-2 protonation to form selenophen-3(2H)-iminium cations, and the reaction of these iminium intermediates with arylhydrazines to obtain arylhydrazones of selenophen-3(2H)-ones followed by their Fischer indolization affording selenopheno[3,2-b]indole molecules.
Collapse
Affiliation(s)
- Roman A Irgashev
- Postovsky Institute of Organic Synthesis, Ural Division, Russian Academy of Sciences, S. Kovalevskoy Str., 22, Ekaterinburg, 620990, Russia.
| | - Alexander S Steparuk
- Postovsky Institute of Organic Synthesis, Ural Division, Russian Academy of Sciences, S. Kovalevskoy Str., 22, Ekaterinburg, 620990, Russia.
| |
Collapse
|
16
|
Raji Reddy C, Islam J, Nagendraprasad T, Ajaykumar U. Electrochemical selenylative ipso-annulation of N-benzylacrylamides to construct seleno-azaspiro[4.5]decadienones. Org Biomol Chem 2024. [PMID: 39011907 DOI: 10.1039/d4ob00805g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/17/2024]
Abstract
Herein, we present the electrochemical synthesis of selenylated azaspiro[4.5]decadienones through domino selenylation/ipso-annulation of N-benzylacrylamides with diselenides. The method showed a wide substrate scope under mild and external oxidant-free reaction conditions, involving the construction of C-Se and C-C bonds. Gram-scale synthesis and further functional group conversion of the product are also demonstrated.
Collapse
Affiliation(s)
- Chada Raji Reddy
- Department of Organic Synthesis & Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad - 500007, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, India
| | - Jannatul Islam
- Department of Organic Synthesis & Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad - 500007, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, India
| | - Thallamapuram Nagendraprasad
- Department of Organic Synthesis & Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad - 500007, India.
| | - Uprety Ajaykumar
- Department of Organic Synthesis & Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad - 500007, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, India
| |
Collapse
|
17
|
Wang D, Zeng L, Shi J, Gao S, Shi L, Sun S, Liang D. Electrophotocatalysis Versus Indirect Electrolysis: Electrochemical Selenocyclization of 3-Aza-1,5-dienes Facilitated by Energy Transfer, Direct Photolysis or N-Hydroxyphthalimide. Chemistry 2024; 30:e202400280. [PMID: 38651795 DOI: 10.1002/chem.202400280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 04/14/2024] [Accepted: 04/23/2024] [Indexed: 04/25/2024]
Abstract
Three hybrid electrochemical protocols, which involve the energy transfer, direct photolysis and N-hydroxyphthalimide catalyst, respectively, are presented for the selenylation/cyclization of the fragile substrates of 3-aza-1,5-dienes with diorganyl diselenides to afford 3-selenomethyl-4-pyrrolin-2-ones. The two electrophotocatalytic reactions and the indirect electrolysis one are both regioselective and external-oxidant- and transition-metal-free, and are associated with a broad substrate scope and high Se-economy, and all three methods are amenable to gram-scale syntheses, late-stage functionalizations, sunlight-induced experiments and all-solar-driven syntheses.
Collapse
Affiliation(s)
- Dongyin Wang
- Yunnan Key Laboratory of Metal-Organic Molecular Materials and Device, School of Chemistry and Chemical Engineering, Kunming University, 2 Puxin Road, Kunming, 650214, China
| | - Li Zeng
- Yunnan Key Laboratory of Metal-Organic Molecular Materials and Device, School of Chemistry and Chemical Engineering, Kunming University, 2 Puxin Road, Kunming, 650214, China
| | - Jifu Shi
- Yunnan Key Laboratory of Metal-Organic Molecular Materials and Device, School of Chemistry and Chemical Engineering, Kunming University, 2 Puxin Road, Kunming, 650214, China
| | - Shulin Gao
- Yunnan Key Laboratory of Metal-Organic Molecular Materials and Device, School of Chemistry and Chemical Engineering, Kunming University, 2 Puxin Road, Kunming, 650214, China
| | - Lou Shi
- Yunnan Key Laboratory of Metal-Organic Molecular Materials and Device, School of Chemistry and Chemical Engineering, Kunming University, 2 Puxin Road, Kunming, 650214, China
| | - Shaoguang Sun
- Medical College, Panzhihua University, 10 Airport Road, Panzhihua, 617000, China
| | - Deqiang Liang
- Yunnan Key Laboratory of Metal-Organic Molecular Materials and Device, School of Chemistry and Chemical Engineering, Kunming University, 2 Puxin Road, Kunming, 650214, China
| |
Collapse
|
18
|
Jamali H, Moradi-Alavian S, Asghari E, Esrafili MD, Payami E, Teimuri-Mofrad R. Prolonged corrosion protection via application of 4-ferrocenylbutyl saturated carboxylate ester derivatives with superior inhibition performance for mild steel. Sci Rep 2024; 14:13847. [PMID: 38879584 PMCID: PMC11180123 DOI: 10.1038/s41598-024-64471-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 06/10/2024] [Indexed: 06/19/2024] Open
Abstract
A series of 4-ferrcenylbutyl carboxylate esters with different alkyl chain length (C2-C4) of carboxylic acids were synthesized using Fe3O4@SiO2@(CH2)3-Im-bisEthylFc[I] nanoparticles as catalyst and have been characterized with FT-IR, 1H NMR, and 13C NMR. Ferrocenyl-based esters were used as corrosion inhibitors of mild steel in the 1M HCl solution as corrosive media. The corrosion inhibition efficiency of the synthesized ferrocenyl-based esters has been assessed by electrochemical impedance spectroscopy (EIS), potentiodynamic polarization (PDP), atomic force microscopy (AFM), and scanning electron microscopy (SEM). The 4-ferrocenylbutyl propionate showed a more effective corrosion inhibition behavior among the studied esters with 96% efficiency after immersion in the corrosive media for 2 weeks. The corrosion inhibition mechanism is dominated by formation of passive layer of inhibitor on the surface of the mild steel by adsorption. Moreover, the adsorption characteristics of 4-butylferrcenyl carboxylate esters on mild steel were thoroughly explored using density functional theory calculations. It was found that the Fe atoms located around the C impurity in the mild steel are the most efficient and active sites to adsorb 4-butylferrcenyl carboxylate esters.
Collapse
Affiliation(s)
- Hajar Jamali
- Organic Synthesis Research Laboratory, Department of Organic Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran
| | - Saleh Moradi-Alavian
- Electrochemistry Research Laboratory, Department of Physical Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran
| | - Elnaz Asghari
- Electrochemistry Research Laboratory, Department of Physical Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran.
| | - Mehdi D Esrafili
- Laboratory of Theoretical Chemistry, Department of Chemistry, University of Maragheh, Maragheh, Iran
| | - Elmira Payami
- Organic Synthesis Research Laboratory, Department of Organic Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran
| | - Reza Teimuri-Mofrad
- Organic Synthesis Research Laboratory, Department of Organic Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran.
| |
Collapse
|
19
|
Shaaban S, Althikrallah HA, Negm A, Abo Elmaaty A, Al-Karmalawy AA. Repurposed organoselenium tethered amidic acids as apoptosis inducers in melanoma cancer via P53, BAX, caspases-3, 6, 8, 9, BCL-2, MMP2, and MMP9 modulations. RSC Adv 2024; 14:18576-18587. [PMID: 38860260 PMCID: PMC11164031 DOI: 10.1039/d4ra02944e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Accepted: 06/03/2024] [Indexed: 06/12/2024] Open
Abstract
Organoselenium (OSe) agents hold promise for preventing cancer due to their potential ability to fight cancer development and protect cells from oxidative damage. Herein, OSe-based maleanilic and succinanilic acids were tested to estimate their antitumor activities against fifteen cancer cell lines. Besides, their potential safety and selectivity were further investigated against two normal cell lines, namely, human skin fibroblasts (HSF) and olfactory ensheathing cell line (OEC) using the growth inhibition percentage (GI%) assay. Moreover, the apoptotic potential of the superior anticancer candidates (8, 9, 10, and 11) was evaluated against P53, BAX, Caspase-3, Caspase-6, Caspase-8, Caspase-9, BCL-2, MMP2, and MMP9 apoptotic markers. Additionally, to enhance our understanding and predict the inhibitory potential of the examined compounds as potential anticancer agents, a thorough structure-activity relationship (SAR) analysis was conducted. On the other hand, molecular docking and ADMET studies were performed for the examined candidates as well. Overall, our findings point to significant anticancer activities of the organoselenium tethered amidic acids, suggesting their promising cytotoxic potential as effective anticancer drugs.
Collapse
Affiliation(s)
- Saad Shaaban
- Department of Chemistry, College of Science, King Faisal University Al-Ahsa 31982 Saudi Arabia
- Department of Chemistry, Faculty of Science, Mansoura University 35516 Mansoura Egypt
| | - Hanan A Althikrallah
- Department of Chemistry, College of Science, King Faisal University Al-Ahsa 31982 Saudi Arabia
| | - Amr Negm
- Department of Chemistry, College of Science, King Faisal University Al-Ahsa 31982 Saudi Arabia
| | - Ayman Abo Elmaaty
- Medicinal Chemistry Department, Faculty of Pharmacy, Port Said University Port Said 42511 Egypt
| | - Ahmed A Al-Karmalawy
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Horus University-Egypt New Damietta 34518 Egypt
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Ahram Canadian University 6th of October City Giza 12566 Egypt
| |
Collapse
|
20
|
Hellwig PS, Bartz RH, Santos RRSA, Guedes JS, Silva MS, Lenardão EJ, Perin G. Telescoping Synthesis of 4-Organyl-5-(organylselanyl)thiazol-2-amines Promoted by Ultrasound. Chempluschem 2024; 89:e202300690. [PMID: 38426670 DOI: 10.1002/cplu.202300690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 02/07/2024] [Indexed: 03/02/2024]
Abstract
In this work, we describe the synthesis of new 4-organyl-5-(organylselanyl)thiazol-2-amine hybrids through a one-pot two-step protocol. The transition metal-free method involves the use of ultrasound as an alternative energy source and Oxone® as oxidant. To obtain the products, a telescoping approach was used, in which 4-organylthiazol-2-amines were firstly prepared under ultrasonic irradiation, followed by the addition of diorganyl diselenides and Oxone®. Thus, 16 compounds were prepared, with yields ranging from 61 % to 98 %, using 2-bromoacetophenone derivatives and diorganyl diselenides as easily available starting materials.
Collapse
Affiliation(s)
- Paola S Hellwig
- Centro de Ciências Químicas, Farmacêuticas e de Alimentos - CCQFA, Universidade Federal de Pelotas - UFPel, P. O. box 354, CEP: 96010-900, Pelotas, RS, Brazil
| | - Ricardo H Bartz
- Centro de Ciências Químicas, Farmacêuticas e de Alimentos - CCQFA, Universidade Federal de Pelotas - UFPel, P. O. box 354, CEP: 96010-900, Pelotas, RS, Brazil
| | - Rafaela R S A Santos
- Centro de Ciências Químicas, Farmacêuticas e de Alimentos - CCQFA, Universidade Federal de Pelotas - UFPel, P. O. box 354, CEP: 96010-900, Pelotas, RS, Brazil
| | - Jonatan S Guedes
- Centro de Ciências Químicas, Farmacêuticas e de Alimentos - CCQFA, Universidade Federal de Pelotas - UFPel, P. O. box 354, CEP: 96010-900, Pelotas, RS, Brazil
| | - Márcio S Silva
- Centro de Ciências Químicas, Farmacêuticas e de Alimentos - CCQFA, Universidade Federal de Pelotas - UFPel, P. O. box 354, CEP: 96010-900, Pelotas, RS, Brazil
| | - Eder J Lenardão
- Centro de Ciências Químicas, Farmacêuticas e de Alimentos - CCQFA, Universidade Federal de Pelotas - UFPel, P. O. box 354, CEP: 96010-900, Pelotas, RS, Brazil
| | - Gelson Perin
- Centro de Ciências Químicas, Farmacêuticas e de Alimentos - CCQFA, Universidade Federal de Pelotas - UFPel, P. O. box 354, CEP: 96010-900, Pelotas, RS, Brazil
| |
Collapse
|
21
|
Zhao L, Weng Y, Zhou X, Wu G. Aminoselenation and Dehydroaromatization of Cyclohexanones with Anilines and Diselenides. Org Lett 2024. [PMID: 38809603 DOI: 10.1021/acs.orglett.4c01799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2024]
Abstract
A three-component cascade reaction involving cyclohexanones, anilines, and diaryl diselenides under metal-free conditions is reported. The ortho-selenation of cyclohexanones with diaryl diselenides, followed by sequential dehydroaromatization with anilines, enables the preparation of a variety of o-selanyl anilines in moderate to excellent yields. This innovative transformation is notable for its excellent tolerance of functional groups and is suitable for the late-stage modification of complex pharmaceuticals.
Collapse
Affiliation(s)
- Lin Zhao
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Yujie Weng
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Xinyu Zhou
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Ge Wu
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
| |
Collapse
|
22
|
Lai S, Liang X, Zeng Q. Recent Progress in Synthesis and Application of Chiral Organoselenium Compounds. Chemistry 2024; 30:e202304067. [PMID: 38078625 DOI: 10.1002/chem.202304067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Indexed: 01/12/2024]
Abstract
Chiral organoselenium compounds have shown an important role as intermediates in many areas, such as drug discovery, organic catalysis, and nanomaterials. A lot of different methods have been developed to synthesize chiral compounds which contain selenium, because they have interesting properties and can be used in real life. Over the last few decades, a lot of progress has been made in synthesizing chiral organoselenium compounds. This work gives an overview of the progress made in creating new ways to synthesize chiral organoselenium compounds by categorizing them into groups based on the reactions they undergo. In addition, the use of chiral organoselenium compounds is also discussed.
Collapse
Affiliation(s)
- Shuyan Lai
- College of Materials, Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu, 610059, China
| | - Xiayu Liang
- College of Materials, Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu, 610059, China
| | - Qingle Zeng
- College of Materials, Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu, 610059, China
| |
Collapse
|
23
|
da Fonseca CAR, Prado VC, Paltian JJ, Kazmierczak JC, Schumacher RF, Sari MHM, Cordeiro LM, da Silva AF, Soares FAA, Oliboni RDS, Luchese C, Cruz L, Wilhelm EA. 4-(Phenylselanyl)-2H-chromen-2-one-Loaded Nanocapsule Suspension-A Promising Breakthrough in Pain Management: Comprehensive Molecular Docking, Formulation Design, and Toxicological and Pharmacological Assessments in Mice. Pharmaceutics 2024; 16:269. [PMID: 38399323 PMCID: PMC10892109 DOI: 10.3390/pharmaceutics16020269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 02/10/2024] [Accepted: 02/11/2024] [Indexed: 02/25/2024] Open
Abstract
Therapies for the treatment of pain and inflammation continue to pose a global challenge, emphasizing the significant impact of pain on patients' quality of life. Therefore, this study aimed to investigate the effects of 4-(Phenylselanyl)-2H-chromen-2-one (4-PSCO) on pain-associated proteins through computational molecular docking tests. A new pharmaceutical formulation based on polymeric nanocapsules was developed and characterized. The potential toxicity of 4-PSCO was assessed using Caenorhabditis elegans and Swiss mice, and its pharmacological actions through acute nociception and inflammation tests were also assessed. Our results demonstrated that 4-PSCO, in its free form, exhibited high affinity for the selected receptors, including p38 MAP kinase, peptidyl arginine deiminase type 4, phosphoinositide 3-kinase, Janus kinase 2, toll-like receptor 4, and nuclear factor-kappa β. Both free and nanoencapsulated 4-PSCO showed no toxicity in nematodes and mice. Parameters related to oxidative stress and plasma markers showed no significant change. Both treatments demonstrated antinociceptive and anti-edematogenic effects in the glutamate and hot plate tests. The nanoencapsulated form exhibited a more prolonged effect, reducing mechanical hypersensitivity in an inflammatory pain model. These findings underscore the promising potential of 4-PSCO as an alternative for the development of more effective and safer drugs for the treatment of pain and inflammation.
Collapse
Affiliation(s)
- Caren Aline Ramson da Fonseca
- Graduate Program in Biochemistry and Bioprospecting, Biochemical Pharmacology Research Laboratory, Federal University of Pelotas, Pelotas CEP 96010-900, RS, Brazil; (C.A.R.d.F.); (J.J.P.); (C.L.)
| | - Vinicius Costa Prado
- Graduate Program in Pharmaceutical Sciences, Pharmaceutical Technology Laboratory, Federal University of Santa Maria, Santa Maria CEP 97105-900, RS, Brazil;
| | - Jaini Janke Paltian
- Graduate Program in Biochemistry and Bioprospecting, Biochemical Pharmacology Research Laboratory, Federal University of Pelotas, Pelotas CEP 96010-900, RS, Brazil; (C.A.R.d.F.); (J.J.P.); (C.L.)
| | - Jean Carlo Kazmierczak
- Graduate Program in Chemistry, Chemistry Department, Federal University of Santa Maria, Santa Maria CEP 97105-900, RS, Brazil; (J.C.K.); (R.F.S.)
| | - Ricardo Frederico Schumacher
- Graduate Program in Chemistry, Chemistry Department, Federal University of Santa Maria, Santa Maria CEP 97105-900, RS, Brazil; (J.C.K.); (R.F.S.)
| | | | - Larissa Marafiga Cordeiro
- Graduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria, Santa Maria CEP 97105-900, RS, Brazil; (L.M.C.); (A.F.d.S.); (F.A.A.S.)
| | - Aline Franzen da Silva
- Graduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria, Santa Maria CEP 97105-900, RS, Brazil; (L.M.C.); (A.F.d.S.); (F.A.A.S.)
| | - Felix Alexandre Antunes Soares
- Graduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria, Santa Maria CEP 97105-900, RS, Brazil; (L.M.C.); (A.F.d.S.); (F.A.A.S.)
| | - Robson da Silva Oliboni
- Center for Chemical, Pharmaceutical, and Food Sciences, CCQFA, Federal University of Pelotas, Pelotas CEP 96010-900, RS, Brazil;
| | - Cristiane Luchese
- Graduate Program in Biochemistry and Bioprospecting, Biochemical Pharmacology Research Laboratory, Federal University of Pelotas, Pelotas CEP 96010-900, RS, Brazil; (C.A.R.d.F.); (J.J.P.); (C.L.)
| | - Letícia Cruz
- Graduate Program in Pharmaceutical Sciences, Pharmaceutical Technology Laboratory, Federal University of Santa Maria, Santa Maria CEP 97105-900, RS, Brazil;
| | - Ethel Antunes Wilhelm
- Graduate Program in Biochemistry and Bioprospecting, Biochemical Pharmacology Research Laboratory, Federal University of Pelotas, Pelotas CEP 96010-900, RS, Brazil; (C.A.R.d.F.); (J.J.P.); (C.L.)
| |
Collapse
|
24
|
Jiao Y, Shi X, Ju L, Yu S. Photoredox-Catalyzed Synthesis of C-Benzoselenazolyl/Benzothiazolyl Glycosides from 2-Isocyanoaryl Selenoethers/Thioethers and Glycosyl Bromides. Org Lett 2024; 26:390-395. [PMID: 38165656 DOI: 10.1021/acs.orglett.3c04059] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2024]
Abstract
Molecules containing heteroatoms, such as Se and S, play an indispensable role in the discovery and design of pharmaceuticals, whereas Se has been less studied. Here, we described a photoredox strategy to synthesize C-benzoselenazolyl (Bs) glycosides from 2-isocyanoaryl selenoethers and glycosyl bromides. This reaction was carried out under mild conditions with high efficiency. C-Benzothiazolyl (Bt) glycosides could also be synthesized from 2-isocyanoaryl thioethers using this strategy. This method can access novel seleno/thiosugars, which will benefit Se/S-containing drug discovery.
Collapse
Affiliation(s)
- Yi Jiao
- State Key Laboratory of Analytical Chemistry for Life Science, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Xiaoran Shi
- State Key Laboratory of Analytical Chemistry for Life Science, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Lei Ju
- Sunichem Company, Limited, Dandong 118003, China
| | - Shouyun Yu
- State Key Laboratory of Analytical Chemistry for Life Science, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| |
Collapse
|