1
|
Li Y, Su Y, Wang H, Xie Y, Wang X, Chang L, Jing Y, Zhang J, Ma JA, Jin H, Lou X, Peng Q, Liu T. Computation-Guided Discovery of Diazole Monosubstituted Tetrazines as Optimal Bioorthogonal Tools. J Am Chem Soc 2024; 146:26884-26896. [PMID: 39164893 DOI: 10.1021/jacs.4c07958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/22/2024]
Abstract
Monosubstituted tetrazines are important bioorthogonal reactive tools due to their rapid ligation with trans-cyclooctene. However, their application is limited by the reactivity-stability paradox in biological environments. In this study, we demonstrated that steric effects are crucial in resolving this paradox through theoretical methods and developed a simple synthetic route to validate our computational findings, leading to the discovery of 1,3-azole-4-yl and 1,2-azole-3-yl monosubstituted tetrazines as superior bioorthogonal tools. These new tetrazines surpass previous tetrazines in terms of high reactivities and elevated stabilities. The most stable tetrazine exhibits a reasonable stability (71% remaining after 24 h incubation in cell culture medium) and an exceptionally high reactivity (k2 > 104 M-1 s-1 toward trans-cyclooctene). Due to its good stability in biological systems, a noncanonical amino acid containing such a tetrazine side chain was genetically encoded into proteins site-specifically via an expanded genetic code. The encoded protein can be efficiently labeled using cyclopropane-fused trans-cyclooctene dyes in living mammalian cells with an ultrafast reaction rate exceeding 107 M-1 s-1, making it one of the fastest protein labeling reactions reported to date. Additionally, we showed its superiority through in vivo reactions in living mice, achieving an efficient local anchoring of proteins. These tetrazines are expected to be optimal bioorthogonal reactive tools within living systems.
Collapse
Affiliation(s)
- Yuxuan Li
- State Key Laboratory of Natural and Biomimetic Drugs, Chemical Biology Center, Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Haidian District, Beijing 100191, China
| | - Yeyu Su
- State Key Laboratory of Natural and Biomimetic Drugs, Chemical Biology Center, Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Haidian District, Beijing 100191, China
| | - Haoyu Wang
- State Key Laboratory of Natural and Biomimetic Drugs, Chemical Biology Center, Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Haidian District, Beijing 100191, China
| | - Yuanzhe Xie
- State Key Laboratory of Natural and Biomimetic Drugs, Chemical Biology Center, Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Haidian District, Beijing 100191, China
| | - Xin Wang
- State Key Laboratory of Natural and Biomimetic Drugs, Chemical Biology Center, Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Haidian District, Beijing 100191, China
| | - Liying Chang
- State Key Laboratory of Natural and Biomimetic Drugs, Chemical Biology Center, Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Haidian District, Beijing 100191, China
| | - Yanbo Jing
- State Key Laboratory of Natural and Biomimetic Drugs, Chemical Biology Center, Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Haidian District, Beijing 100191, China
| | - Jiayi Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, Chemical Biology Center, Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Haidian District, Beijing 100191, China
| | - Jun-An Ma
- Department of Chemistry, Tianjin University, Tianjin 300072, China
| | - Hongwei Jin
- State Key Laboratory of Natural and Biomimetic Drugs, Chemical Biology Center, Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Haidian District, Beijing 100191, China
| | - Xiaoding Lou
- State Key Laboratory of Biogeology and Environmental Geology, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Qian Peng
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Tao Liu
- State Key Laboratory of Natural and Biomimetic Drugs, Chemical Biology Center, Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Haidian District, Beijing 100191, China
| |
Collapse
|
2
|
Ma P, Svatunek D, Zhu Z, Boger DL, Duan XH, Houk KN. Computational Studies of Reactions of 1,2,4,5-Tetrazines with Enamines in MeOH and HFIP. J Am Chem Soc 2024; 146:18706-18713. [PMID: 38941192 DOI: 10.1021/jacs.4c06067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/30/2024]
Abstract
The reaction between 1,2,4,5-tetrazines and alkenes in polar solvents proceeds through a Diels-Alder cycloaddition along the C-C axis (C3/C6 cycloaddition) of the tetrazine, followed by dinitrogen loss. By contrast, the reactions of 1,2,4,5-tetrazines with enamines in hexafluoroisopropanol (HFIP) give 1,2,4-triazine products stemming from a formal Diels-Alder addition across the N-N axis (N1/N4 cycloaddition). We explored the mechanism of this interesting solvent effect through DFT calculations in detail and revealed a novel reaction pathway characterized by C-N bond formation, deprotonation, and a 3,3-sigmatropic rearrangement. The participation of an HFIP molecule was found to be crucial to the N1/N4 selectivity over C3/C6 due to the more favored initial C-N bond formation than C-C bond formation.
Collapse
Affiliation(s)
- Pengchen Ma
- Department of Chemistry, School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Material Chemistry and Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, Xi'an Jiaotong University, Xi'an 710049, China
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Dennis Svatunek
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095, United States
- Institute of Applied Synthetic Chemistry, TU Wien, 1060 Vienna, Austria
| | - Zixi Zhu
- Department of Chemistry and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Dale L Boger
- Department of Chemistry and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Xin-Hua Duan
- Department of Chemistry, School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Material Chemistry and Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, Xi'an Jiaotong University, Xi'an 710049, China
| | - K N Houk
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095, United States
| |
Collapse
|
3
|
Svatunek D. Computational Organic Chemistry: The Frontier for Understanding and Designing Bioorthogonal Cycloadditions. Top Curr Chem (Cham) 2024; 382:17. [PMID: 38727989 PMCID: PMC11087259 DOI: 10.1007/s41061-024-00461-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 04/06/2024] [Indexed: 05/13/2024]
Abstract
Computational organic chemistry has become a valuable tool in the field of bioorthogonal chemistry, offering insights and aiding in the progression of this branch of chemistry. In this review, I present an overview of computational work in this field, including an exploration of both the primary computational analysis methods used and their application in the main areas of bioorthogonal chemistry: (3 + 2) and [4 + 2] cycloadditions. In the context of (3 + 2) cycloadditions, detailed studies of electronic effects have informed the evolution of cycloalkyne/1,3-dipole cycloadditions. Through computational techniques, researchers have found ways to adjust the electronic structure via hyperconjugation to enhance reactions without compromising stability. For [4 + 2] cycloadditions, methods such as distortion/interaction analysis and energy decomposition analysis have been beneficial, leading to the development of bioorthogonal reactants with improved reactivity and the creation of orthogonal reaction pairs. To conclude, I touch upon the emerging fields of cheminformatics and machine learning, which promise to play a role in future reaction discovery and optimization.
Collapse
Affiliation(s)
- Dennis Svatunek
- Institute of Applied Synthetic Chemistry, Technische Universität Wien (TU Wien), Getreidemarkt 9, 1060, Vienna, Austria.
| |
Collapse
|
4
|
Herrmann B, Svatunek D. Directionality of Halogen-Bonds: Insights from 2D Energy Decomposition Analysis. Chem Asian J 2024:e202301106. [PMID: 38390759 DOI: 10.1002/asia.202301106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 01/25/2024] [Indexed: 02/24/2024]
Abstract
Halogen bonds are typically observed to have a linear arrangement with a 180° angle between the nucleophile and the halogen bond acceptor X-R. This linearity is commonly explained using the σ-hole model, although there have been alternative explanations involving exchange repulsion forces. We employ two-dimensional Distortion/Interaction and Energy Decomposition Analysis to examine the archetypal H3 N⋯X2 halogen bond systems. Our results indicate that although halogen bonds are predominantly electrostatic, their directionality is largely due to decreased Pauli repulsion in linear configurations as opposed to angled ones in the I2 and Br2 systems. As we move to the smaller halogens, Cl2 and F2 , the influence of Pauli repulsion diminishes, and the energy surface is shaped by orbital interactions and electrostatic forces. These results support the role of exchange repulsion forces in influencing the directionality of strong halogen bonds. Additionally, we demonstrate that the 2D Energy Decomposition Analysis is a useful tool for enhancing our understanding of the nature of potential energy surfaces in noncovalent interactions.
Collapse
Affiliation(s)
- Barbara Herrmann
- Institute of Applied Synthetic Chemistry, TU Wien, Getreidemarkt 9, 1060, Vienna, Austria
| | - Dennis Svatunek
- Institute of Applied Synthetic Chemistry, TU Wien, Getreidemarkt 9, 1060, Vienna, Austria
| |
Collapse
|
5
|
Svatunek D, Murnauer A, Tan Z, Houk KN, Lang K. How cycloalkane fusion enhances the cycloaddition reactivity of dibenzocyclooctynes. Chem Sci 2024; 15:2229-2235. [PMID: 38332832 PMCID: PMC10848739 DOI: 10.1039/d3sc05789e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 01/05/2024] [Indexed: 02/10/2024] Open
Abstract
Dibenzoannulated cyclooctynes have emerged as valuable compounds for bioorthogonal reactions. They are commonly used in combination with azides in strain-promoted 1,3-dipolar cycloadditions. They are typically, however, unreactive towards 3,6-disubstituted tetrazines in inverse electron-demand Diels-Alder cycloadditions. Recently a dibenzoannulated bicyclo[6.1.0]nonyne derivative (DMBO) with a cyclopropane fused to the cyclooctyne core was described, which showed surprising reactivity towards tetrazines. To elucidate the unusual reactivity of DMBO, we performed density functional theory calculations and revealed that a tub-like structure in the transition state results in a much lower activation barrier than in the absence of cyclopropane fusion. The same transition state geometry is found for different cycloalkanes fused to the cyclooctyne core albeit higher activation barriers are observed for increased ring sizes. This conformation is energetically unfavored for previously known dibenzoannulated cyclooctynes and allows tetrazines and azides to approach DMBO from the face rather than the edge, a trajectory that was hitherto not observed for this class of activated dieno- and dipolarophiles.
Collapse
Affiliation(s)
- Dennis Svatunek
- Department of Chemistry and Biochemistry, University of California Los Angeles California 90095-1569 USA
- Institute of Applied Synthetic Chemistry, TU Wien Getreidemarkt 9 1060 Vienna Austria
| | - Anton Murnauer
- Department of Chemistry and Applied Biosciences, ETH Zurich 8093 Zurich Switzerland
| | - Zhuoting Tan
- Department of Chemistry and Biochemistry, University of California Los Angeles California 90095-1569 USA
| | - K N Houk
- Department of Chemistry and Biochemistry, University of California Los Angeles California 90095-1569 USA
| | - Kathrin Lang
- Department of Chemistry and Applied Biosciences, ETH Zurich 8093 Zurich Switzerland
| |
Collapse
|
6
|
Májek M, Trtúšek M. Discovery of new tetrazines for bioorthogonal reactions with strained alkenes via computational chemistry. RSC Adv 2024; 14:4345-4351. [PMID: 38304564 PMCID: PMC10828936 DOI: 10.1039/d3ra08712c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 01/25/2024] [Indexed: 02/03/2024] Open
Abstract
Tetrazines are widely employed reagents in bioorthogonal chemistry, as they react readily with strained alkenes in inverse electron demand Diels-Alder reactions, allowing for selective labeling of biomacromolecules. For optimal performance, tetrazine reagents have to react readily with strained alkenes, while remaining inert against nucleophiles like thiols. Balancing these conditions is a challenge, as reactivity towards strained alkenes and nucleophiles is governed by the same factor - the energy of unoccupied orbitals of tetrazine. Herein, we utilize computational chemistry to screen a set of tetrazine derivatives, aiming to identify structural elements responsible for a better ratio of reactivity with strained alkenes vs. stability against nucleophiles. This advantageous trait is present in sulfone- and sulfoxide-substituted tetrazines. In the end, the distortion/interaction model helped us to identify that the reason behind this enhanced reactivity profile is a secondary orbital interaction between the strained alkene and sulfone-/sulfoxide-substituted tetrazine. This insight can be used to design new tetrazines for bioorthogonal chemistry with improved reactivity/stability profiles.
Collapse
Affiliation(s)
- Michal Májek
- Comenius University Bratislava, Faculty of Natural Sciences, Department of Organic Chemistry Mlynská Dolina, Ilkovičova 6 842 15 Bratislava Slovakia
| | - Matej Trtúšek
- Comenius University Bratislava, Faculty of Natural Sciences, Department of Organic Chemistry Mlynská Dolina, Ilkovičova 6 842 15 Bratislava Slovakia
| |
Collapse
|
7
|
Fernández I, Bickelhaupt FM, Svatunek D. Unraveling the Bürgi-Dunitz Angle with Precision: The Power of a Two-Dimensional Energy Decomposition Analysis. J Chem Theory Comput 2023; 19:7300-7306. [PMID: 37791978 PMCID: PMC10601473 DOI: 10.1021/acs.jctc.3c00907] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Indexed: 10/05/2023]
Abstract
Understanding the geometrical preferences in chemical reactions is crucial for advancing the field of organic chemistry and improving synthetic strategies. One such preference, the Bürgi-Dunitz angle, is central to nucleophilic addition reactions involving carbonyl groups. This study successfully employs a novel two-dimensional Distortion-Interaction/Activation-Strain Model in combination with a two-dimensional Energy Decomposition Analysis to investigate the origins of the Bürgi-Dunitz angle in the addition reaction of CN- to (CH3)2C═O. We constructed a 2D potential energy surface defined by the distance between the nucleophile and carbonylic carbon atom and by the attack angle, followed by an in-depth exploration of energy components, including strain and interaction energy. Our analysis reveals that the Bürgi-Dunitz angle emerges from a delicate balance between two key factors: strain energy and interaction energy. High strain energy, as a result of the carbonyl compound distorting to avoid Pauli repulsion, is encountered at high angles, thus setting the upper bound. On the other hand, interaction energy is shaped by a dominant Pauli repulsion when the angles are lower. This work emphasizes the value of the 2D Energy Decomposition Analysis as a refined tool, offering both quantitative and qualitative insights into chemical reactivity and selectivity.
Collapse
Affiliation(s)
- Israel Fernández
- Departamento
de Química Orgánica and Centro de Innovación
en Química Avanzada (ORFEO−CINQA), Facultad de Ciencias
Químicas, Universidad Complutense
de Madrid, 28040-Madrid, Spain
| | - F. Matthias Bickelhaupt
- Department
of Chemistry and Pharmaceutical Sciences, AIMMS, Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands
- Institute
for Molecules and Materials (IMM), Radboud
University, Nijmegen 6500 GL, The Netherlands
- Department
of Chemical Sciences, University of Johannesburg, Johannesburg 2006, South Africa
| | - Dennis Svatunek
- Institute
of Applied Synthetic Chemistry, TU Wien, Getreidemarkt 9, 1060 Vienna, Austria
| |
Collapse
|
8
|
Houszka N, Mikula H, Svatunek D. Substituent Effects in Bioorthogonal Diels-Alder Reactions of 1,2,4,5-Tetrazines. Chemistry 2023; 29:e202300345. [PMID: 36853623 PMCID: PMC10946812 DOI: 10.1002/chem.202300345] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 02/27/2023] [Accepted: 02/28/2023] [Indexed: 03/01/2023]
Abstract
1,2,4,5-Tetrazines are increasingly used as reactants in bioorthogonal chemistry due to their high reactivity in Diels-Alder reactions with various dienophiles. Substituents in the 3- and 6-positions of the tetrazine scaffold are known to have a significant impact on the rate of cycloadditions; this is commonly explained on the basis of frontier molecular orbital theory. In contrast, we show that reactivity differences between commonly used classes of tetrazines are not controlled by frontier molecular orbital interactions. In particular, we demonstrate that mono-substituted tetrazines show high reactivity due to decreased Pauli repulsion, which leads to a more asynchronous approach associated with reduced distortion energy. This follows the recent Vermeeren-Hamlin-Bickelhaupt model of reactivity increase in asymmetric Diels-Alder reactions. In addition, we reveal that ethylene is not a good model compound for other alkenes in Diels-Alder reactions.
Collapse
Affiliation(s)
- Nicole Houszka
- Institute of Applied Synthetic ChemistryTU WienGetreidemarkt 91060ViennaAustria
| | - Hannes Mikula
- Institute of Applied Synthetic ChemistryTU WienGetreidemarkt 91060ViennaAustria
| | - Dennis Svatunek
- Institute of Applied Synthetic ChemistryTU WienGetreidemarkt 91060ViennaAustria
| |
Collapse
|