1
|
Roy D, Handlovic TT, Farooq MQ, Leme GM, Armstrong DW, Nasreddine W, Haidar Ahmad IA. Introducing macrocyclic glycopeptide columns as unique achiral stationary phases: Insights from hydrophobic subtraction model and in-silico modeling. Anal Chim Acta 2024; 1329:343223. [PMID: 39396288 DOI: 10.1016/j.aca.2024.343223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/05/2024] [Accepted: 09/06/2024] [Indexed: 10/15/2024]
Abstract
BACKGROUND The need for stationary phases with unique selectivity in reversed-phase liquid chromatography has been of utmost importance to chromatographers for advancing the analysis of complex samples. Macrocyclic glycopeptide based stationary phases have been widely used for chiral separations with different chromatographic modes such as normal phase, reversed phase, and supercritical fluid chromatography. Given the multimodal retention mechanisms namely π-π complex interaction, hydrogen bonding, dipole-dipole interaction, and strong Coulombic interactions by which analytes are separated using the macrocyclic glycopeptides, these stationary phases are expected to provide novel selectivity when used under the reversed phase for achiral separations. RESULTS Herein, for the first time we have conducted a systematic study using the improved hydrophobic subtraction model (HSM) which incoporates dipole-dipole interactions to demonstrate the novel selectivity offered by four different macrocyclic glycopeptide based stationary phases, namely NicoShell, TeicoShell, TagShell, and VancoShell. A comparison of the HSM parameters for these columns has been made with 551 commercially available reversed phase stationary phases and the differences in the values point to the importance of adding these columns to the already existing arsenal. These stationary phases offer separations over a wide range of pH and show variability in selectivity depending on the pH of the mobile phase which make them versatile for method development in the reversed phase mode. Additionally, we have provided an actual example of a separation from an Amgen discovery project using the VancoShell column aided by computer-assisted modelling. SIGNIFICANCE This is the first report characterizing macrocyclic glycopeptides for achiral RPLC applications. The selectivity of these stationary phases were found to be unique when compared to other commercially available stationary phases thereby acting as their own class of columns. The unusual selectivity of the columns enabled separation of complex pharmaceutical samples.
Collapse
Affiliation(s)
- Daipayan Roy
- Amgen Research, One Amgen Center Drive, Thousand Oaks, CA, 91320, USA.
| | - Troy T Handlovic
- Amgen Research, One Amgen Center Drive, Thousand Oaks, CA, 91320, USA
| | | | | | - Daniel W Armstrong
- Department of Chemistry and Biochemistry, University of Texas at Arlington, Arlington, TX, 76019, USA; AZYP, LLC, 700 Planetarium Place, Arlington, TX, 76019, USA
| | - Wassim Nasreddine
- Rutgers Infrastructure Monitoring and Evaluation (RIME) Group, Department of Civil and Environmental Engineering, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA
| | | |
Collapse
|
2
|
Gherdaoui D, Yahoum MM, Toumi S, Lekmine S, Lefnaoui S, Benslama O, Bouallouche R, Tahraoui H, Ola MS, Ali A, Zhang J, Amrane A. Elucidating Chiral Resolution of Aromatic Amino Acids Using Glycopeptide Selectors: A Combined Molecular Docking and Chromatographic Study. Int J Mol Sci 2024; 25:9120. [PMID: 39201804 PMCID: PMC11354492 DOI: 10.3390/ijms25169120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 08/10/2024] [Accepted: 08/20/2024] [Indexed: 09/03/2024] Open
Abstract
An asymmetric synthesis is a favorable approach for obtaining enantiomerically pure substances, but racemic resolution remains an efficient strategy. This study aims to elucidate the chiral resolution of aromatic amino acids and their elution order using glycopeptides as chiral selectors through molecular docking analysis. Chiral separation experiments were conducted using Vancomycin as a chiral additive in the mobile phase (CMPA) at various concentrations, coupled with an achiral amino column as the stationary phase. The Autodock Vina 1.1.2 software was employed to perform molecular docking simulations between each enantiomer (ligand) and Vancomycin (receptor) to evaluate binding affinities, demonstrate enantiomeric resolution feasibility, and elucidate chiral recognition mechanisms. Utilizing Vancomycin as CMPA at a concentration of 1.5 mM enabled the separation of tryptophan enantiomers with a resolution of 3.98 and tyrosine enantiomers with a resolution of 2.97. However, a poor chiral resolution was observed for phenylalanine and phenylglycine. Molecular docking analysis was employed to elucidate the lack of separation and elution order for tryptophan and tyrosine enantiomers. By calculating the binding energy, docking results were found to be in good agreement with experimental findings, providing insights into the underlying mechanisms governing chiral recognition in this system and the interaction sites. This comprehensive approach clarifies the complex relationship between chiral discrimination and molecular architecture, offering valuable information for creating and improving chiral separation protocols.
Collapse
Affiliation(s)
- Dehbiya Gherdaoui
- Laboratory of Biomaterials and Transport Phenomena (LBMPT), New Urban Pole, Medea University, Medea 26000, Algeria
- Higher Normal School, Laboratory of Research on Bio-Active Products and Valorization of Biomasse, Old-Kouba, Algiers 16050, Algeria
| | - Madiha Melha Yahoum
- Laboratory of Biomaterials and Transport Phenomena (LBMPT), New Urban Pole, Medea University, Medea 26000, Algeria
- Materials and Environmental Laboratory (LME), University of Medea, New Urban Pole, Medea 26000, Algeria
| | - Selma Toumi
- Laboratory of Biomaterials and Transport Phenomena (LBMPT), New Urban Pole, Medea University, Medea 26000, Algeria
| | - Sabrina Lekmine
- Biotechnology, Water, Environment and Health Laboratory, Abbes Laghrour University, Khenchela 40000, Algeria
| | - Sonia Lefnaoui
- Laboratory of Biomaterials and Transport Phenomena (LBMPT), New Urban Pole, Medea University, Medea 26000, Algeria
| | - Ouided Benslama
- Laboratory of Natural Substances, Biomolecules and Biotechnological Applications, Department of Natural and Life Sciences, Larbi Ben M’Hidi University, Oum El Bouaghi 04000, Algeria
| | - Rachida Bouallouche
- Reaction Engineering Laboratory, Faculty of Mechanical and Process Engineering, University of Science and Technology Houari Boumediene, BP32 El Alia, Bab Ezzouar, Algiers 16111, Algeria
| | - Hichem Tahraoui
- Laboratory of Biomaterials and Transport Phenomena (LBMPT), New Urban Pole, Medea University, Medea 26000, Algeria
- Laboratory of Chemical Process Engineering, Department of Process Engineering, Faculty of Technology, Ferhat Abbas University, Setif-1, Setif 19000, Algeria
- National Higher School of Chemistry of Rennes, Scientific Research National Center (CNRS), Rennes Institute of Chemical Sciences—Mixed Research Unit (ISCR—UMR6226), Rennes University, 35000 Rennes, France
| | - Mohammad Shamsul Ola
- Department of Biochemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Ahmad Ali
- Department of Life Sciences, University of Mumbai, Vidyanagari, Mumbai 400098, India
| | - Jie Zhang
- School of Engineering, Merz Court, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
| | - Abdeltif Amrane
- National Higher School of Chemistry of Rennes, Scientific Research National Center (CNRS), Rennes Institute of Chemical Sciences—Mixed Research Unit (ISCR—UMR6226), Rennes University, 35000 Rennes, France
| |
Collapse
|
3
|
Kuncová A, Svoboda J, Tůma J, Asnin L, Schug K, Kohout M. Chiral zwitterionic stationary phases based on Cinchona alkaloids and dipeptides - design, synthesis and application in chiral separation. J Chromatogr A 2024; 1717:464664. [PMID: 38271770 DOI: 10.1016/j.chroma.2024.464664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 12/29/2023] [Accepted: 01/17/2024] [Indexed: 01/27/2024]
Abstract
Chiral resolution of polar organic compounds such as amino acids and peptides represents an important chromatographic task due to increasing significance of natural species, which play important signaling and regulatory roles in the living organisms. Despite the number of available chiral stationary phases, this task remains challenging, since not many of the commercially available systems are capable to resolve non-derivatized zwitterionic species. In this study, we present a target-oriented design of a new class of chiral selectors. Pursuing the goal to separate amino acids, and especially short peptides, we have combined Cinchona alkaloids - quinine and quinidine - with three different biogenic dipeptides. We have synthesized six different chiral stationary phases, with selector loading of ∼200 μmol g-1, and tested their chiral recognition capabilities for acidic, basic and zwitterionic analytes using various mobile phases. We have observed that all chiral stationary phases retain the chiral anion exchange capability known for commercially available Cinchona-based columns leading to baseline or partial resolution of six out of ten analytes. The performance in chiral resolution of basic analytes is not optimum due to the weak cation exchange character of the peptidic residue. However, we report on encouraging results in the chiral resolution of short peptides, for which, depending on their structure, we see the chiral resolution of up to three stereoisomers (from four possible) in a preliminary screening.
Collapse
Affiliation(s)
- Anežka Kuncová
- Department of Organic Chemistry, University of Chemistry and Technology Prague, Technická 5, 166 28 Prague, Czech Republic
| | - Jiří Svoboda
- Department of Organic Chemistry, University of Chemistry and Technology Prague, Technická 5, 166 28 Prague, Czech Republic
| | - Jiří Tůma
- Department of Organic Chemistry, University of Chemistry and Technology Prague, Technická 5, 166 28 Prague, Czech Republic
| | - Leonid Asnin
- Department of Chemistry and Biotechnology, Perm National Research Polytechnic University, 29 Komsomolsky Al, 614990 Perm, Russia
| | - Kevin Schug
- Department of Chemistry and Biochemistry, College of Sciences, UT Arlington, 700 Planetarium PI, TX 760 19, Arlington, United States
| | - Michal Kohout
- Department of Organic Chemistry, University of Chemistry and Technology Prague, Technická 5, 166 28 Prague, Czech Republic.
| |
Collapse
|
4
|
Ibrahim AE, El Gohary NA, Aboushady D, Samir L, Karim SEA, Herz M, Salman BI, Al-Harrasi A, Hanafi R, El Deeb S. Recent advances in chiral selectors immobilization and chiral mobile phase additives in liquid chromatographic enantio-separations: A review. J Chromatogr A 2023; 1706:464214. [PMID: 37506464 DOI: 10.1016/j.chroma.2023.464214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 07/10/2023] [Accepted: 07/11/2023] [Indexed: 07/30/2023]
Abstract
For decades now, the separation of chiral enantiomers of drugs has been gaining the interest and attention of researchers. In 1991, the first guidelines for development of chiral drugs were firstly released by the US-FDA. Since then, the development in chromatographic enantioseparation tools has been fast and variable, aiming at creating a suitable environment where the physically and chemically identical enantiomers can be separated. Among those tools, the immobilization of chiral selectors (CS) on different stationary phases and the chiral mobile phase additives (CMPA) which have been progressed and studied extensively. This review article highlights the major advances in immobilization of CS together with their different recognition mechanisms as well as CMPA as a cheaper and successful alternative for chiral stationary phases. Moreover, the role of molecular modeling tool as a pre-step in the choice of CS for evaluating possible interactions with different ligands has been pointed up. Illustrations of reported methods and updates for immobilized CS and CMPA have been included.
Collapse
Affiliation(s)
- Adel Ehab Ibrahim
- Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, Port-Said University, Port-Said 42511, Egypt; Natural and Medical Sciences Research Center, University of Nizwa, P.O. Box 33, Birkat Al Mauz, Nizwa 616, Sultanate of Oman
| | - Nesrine Abdelrehim El Gohary
- Pharmaceutical Chemistry Department, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo 11835, Egypt
| | - Dina Aboushady
- Pharmaceutical Chemistry Department, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo 11835, Egypt
| | - Liza Samir
- Pharmaceutical Chemistry Department, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo 11835, Egypt
| | - Shereen Ekram Abdel Karim
- Pharmaceutical Chemistry Department, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo 11835, Egypt
| | - Magy Herz
- Pharmaceutical Chemistry Department, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo 11835, Egypt
| | - Baher I Salman
- Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut, 71524, Egypt
| | - Ahmed Al-Harrasi
- Natural and Medical Sciences Research Center, University of Nizwa, P.O. Box 33, Birkat Al Mauz, Nizwa 616, Sultanate of Oman
| | - Rasha Hanafi
- Pharmaceutical Chemistry Department, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo 11835, Egypt
| | - Sami El Deeb
- Institute of Medicinal and Pharmaceutical Chemistry, Technische Universität Braunschweig, Braunschweig 38092, Germany; Institute of Pharmacy, Freie Universität Berlin, Königin-Luise-Str. 2+4, 14195 Berlin, Germany.
| |
Collapse
|
5
|
Asghar M, Lakhani A, Asif M, Sheikh NS, Hashmi MA, Ludwig R, Hammud HH, Ayub K. Chiral Recognition of Amino Acids Using CC2 Porous Organic Cages. J Phys Chem A 2023; 127:4245-4258. [PMID: 37155274 DOI: 10.1021/acs.jpca.2c08859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Enantiomers have the same physical properties but different chemical properties due to the difference in the orientation of groups in space and thus Chiral discrimination is quite necessary, as an enantiomer of drug can have lethal effects. In this study, we used the CC2 cage for chiral discrimination of amino acids using density functional theory. The results indicated the physisorption of amino acids in the central cavity of the cage. Among the four selected amino acids, proline showed maximum interactions with the cage and maximum chiral discrimination energy is also observed in the case of proline that is 2.78 kcal/mol. Quantum theory of atoms in molecules and noncovalent interaction index analyses showed that the S enantiomer in each case has maximum interactions. The charge transfer between the analyte and surface is further studied through natural bond orbital analysis. It showed sensitivity of cage for both enantiomers, but a more pronounced effect is seen for S enantiomers. In frontier molecular orbital analysis, the least EH-L gap is observed in the case of R proline with a maximum charge transfer of -0.24 e-. Electron density difference analysis is carried out to analyze the pattern of the charge distribution. The partial density of state analysis is computed to understand the contribution of each enantiomer in overall density of the complexes. Our results show that S-CC2 porous organic cages have a good ability to differentiate between two enantiomers. S-CC2 porous organic cages efficiently differentiated the S enantiomer from the R enantiomers of selected amino acids.
Collapse
Affiliation(s)
- Maria Asghar
- Department of Chemistry, COMSATS University, Abbottabad Campus, KPK, Abbottabad 22060, Pakistan
| | - Ahmed Lakhani
- Department of Biomedical and Health Sciences, Calumet College of St. Joseph, 2400, New York Avenue, Whiting, Indiana 46394, United States
| | - Misbah Asif
- Department of Chemistry, COMSATS University, Abbottabad Campus, KPK, Abbottabad 22060, Pakistan
| | - Nadeem S Sheikh
- Chemical Sciences, Faculty of Science, Universiti Brunei Darussalam, Jalan Tungku Link, Gadong BE1410, Brunei Darussalam
| | - Muhammad Ali Hashmi
- Department of Chemistry, Division of Science & Technology, University of Education, Lahore 54770, Pakistan
| | - Ralf Ludwig
- University of Rostock, Institute of Chemistry, Physical and Theoretical Chemistry, Albert-Einstein-Straße 27, Rostock 18059, Germany
- University of Rostock, Faculty of Interdisciplinary Research, Department "Science and Technology of Life, Light and Matter", Rostock 18059, Germany
- Leibniz Institute for Catalysis, Rostock 18059, Germany
| | - Hassan H Hammud
- Department of Chemistry, College of Science, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Khurshid Ayub
- Department of Chemistry, COMSATS University, Abbottabad Campus, KPK, Abbottabad 22060, Pakistan
| |
Collapse
|
6
|
Kaya C, Birgül K, Bülbül B. Fundamentals of chirality, resolution, and enantiopure molecule synthesis methods. Chirality 2023; 35:4-28. [PMID: 36366874 DOI: 10.1002/chir.23512] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 09/23/2022] [Accepted: 10/11/2022] [Indexed: 11/13/2022]
Abstract
The chirality of molecules is a concept that explains the interactions in nature. We may observe the same formula but different organizations revolving around the chiral center. Since Pasteur's meticulous observation of sodium ammonium tartrate crystals' structure, scientists have discovered many features of chiral molecules. The number of newly approved single enantiomeric drugs increases every year and takes place in the market. Thus, separation or resolution methods of racemic mixtures are of continued importance in the efficacy of drugs, installation of affordable production processes, and convenient synthetic chemistry practice. This article presents the asymmetric synthesis approaches and the classification of direct resolution methods of chiral molecules.
Collapse
Affiliation(s)
- Cem Kaya
- Department of Pharmacy, Haydarpasa Numune Training and Research Hospital, İstanbul, Turkey.,Department of Pharmaceutical Chemistry, School of Pharmacy, Altınbaş University, İstanbul, Turkey
| | - Kaan Birgül
- Department of Pharmaceutical Chemistry, School of Pharmacy, Bahçeşehir University, İstanbul, Turkey
| | - Bahadır Bülbül
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Düzce University, Düzce, Turkey
| |
Collapse
|
7
|
Hubbard MA, Luyet C, Kumar P, Elvati P, VanEpps JS, Violi A, Kotov NA. Chiral chromatography and surface chirality of carbon nanoparticles. Chirality 2022; 34:1494-1502. [PMID: 36221174 PMCID: PMC9828453 DOI: 10.1002/chir.23507] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 09/19/2022] [Accepted: 09/23/2022] [Indexed: 01/12/2023]
Abstract
Chiral carbon nanoparticles (CNPs) represent a rapidly evolving area of research for optical and biomedical technologies. Similar to small molecules, applications of CNPs as well as fundamental relationships between their optical activity and structural asymmetry would greatly benefit from their enantioselective separations by chromatography. However, this technique remains in its infancy for chiral carbon and other nanoparticles. The possibility of effective separations using high performance liquid chromatography (HPLC) with chiral stationary phases remains an open question whose answer can also shed light on the components of multiscale chirality of the nanoparticles. Herein, we report a detailed methodology of HPLC for successful separation of chiral CNPs and establish a path for its future optimization. A mobile phase of water/acetonitrile was able to achieve chiral separation of CNPs derived from L- and D-cysteine denoted as L-CNPs and D-CNPs. Molecular dynamics simulations show that the teicoplanin-based stationary phase has a higher affinity for L-CNPs than for D-CNPs, in agreement with experiments. The experimental and computational findings jointly indicate that chiral centers of chiral CNPs are present at their surface, which is essential for the multiple applications of these chiral nanostructures and equally essential for interactions with biomolecules and circularly polarized photons.
Collapse
Affiliation(s)
- Misché A. Hubbard
- Department of Chemical EngineeringUniversity of MichiganAnn ArborMichiganUSA,Biointerfaces InstituteUniversity of MichiganAnn ArborMichiganUSA,Department of Emergency MedicineUniversity of MichiganAnn ArborMichiganUSA
| | - Chloe Luyet
- Department of Chemical EngineeringUniversity of MichiganAnn ArborMichiganUSA
| | - Prashant Kumar
- Department of Chemical EngineeringUniversity of MichiganAnn ArborMichiganUSA,Biointerfaces InstituteUniversity of MichiganAnn ArborMichiganUSA
| | - Paolo Elvati
- Department of Mechanical EngineeringUniversity of MichiganAnn ArborMichiganUSA
| | - J. Scott VanEpps
- Biointerfaces InstituteUniversity of MichiganAnn ArborMichiganUSA,Department of Emergency MedicineUniversity of MichiganAnn ArborMichiganUSA,Department of Biomedical EngineeringUniversity of MichiganAnn ArborMichiganUSA,Department of Macromolecular Science and EngineeringUniversity of MichiganAnn ArborMichiganUSA,The Max Harry Weil Institute for Critical Care Research and InnovationUniversity of MichiganAnn ArborMichiganUSA
| | - Angela Violi
- Department of Chemical EngineeringUniversity of MichiganAnn ArborMichiganUSA,Department of Mechanical EngineeringUniversity of MichiganAnn ArborMichiganUSA,Biophysics ProgramUniversity of MichiganAnn ArborMichiganUSA,Department of Electrical Engineering and Computer ScienceUniversity of MichiganAnn ArborMichiganUSA
| | - Nicholas A. Kotov
- Department of Chemical EngineeringUniversity of MichiganAnn ArborMichiganUSA,Biointerfaces InstituteUniversity of MichiganAnn ArborMichiganUSA,Department of Biomedical EngineeringUniversity of MichiganAnn ArborMichiganUSA,Department of Macromolecular Science and EngineeringUniversity of MichiganAnn ArborMichiganUSA,Department of Materials Science and EngineeringUniversity of MichiganAnn ArborMichiganUSA
| |
Collapse
|
8
|
Peluso P, Chankvetadze B. Recognition in the Domain of Molecular Chirality: From Noncovalent Interactions to Separation of Enantiomers. Chem Rev 2022; 122:13235-13400. [PMID: 35917234 DOI: 10.1021/acs.chemrev.1c00846] [Citation(s) in RCA: 57] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
It is not a coincidence that both chirality and noncovalent interactions are ubiquitous in nature and synthetic molecular systems. Noncovalent interactivity between chiral molecules underlies enantioselective recognition as a fundamental phenomenon regulating life and human activities. Thus, noncovalent interactions represent the narrative thread of a fascinating story which goes across several disciplines of medical, chemical, physical, biological, and other natural sciences. This review has been conceived with the awareness that a modern attitude toward molecular chirality and its consequences needs to be founded on multidisciplinary approaches to disclose the molecular basis of essential enantioselective phenomena in the domain of chemical, physical, and life sciences. With the primary aim of discussing this topic in an integrated way, a comprehensive pool of rational and systematic multidisciplinary information is provided, which concerns the fundamentals of chirality, a description of noncovalent interactions, and their implications in enantioselective processes occurring in different contexts. A specific focus is devoted to enantioselection in chromatography and electromigration techniques because of their unique feature as "multistep" processes. A second motivation for writing this review is to make a clear statement about the state of the art, the tools we have at our disposal, and what is still missing to fully understand the mechanisms underlying enantioselective recognition.
Collapse
Affiliation(s)
- Paola Peluso
- Istituto di Chimica Biomolecolare ICB, CNR, Sede secondaria di Sassari, Traversa La Crucca 3, Regione Baldinca, Li Punti, I-07100 Sassari, Italy
| | - Bezhan Chankvetadze
- Institute of Physical and Analytical Chemistry, School of Exact and Natural Sciences, Tbilisi State University, Chavchavadze Avenue 3, 0179 Tbilisi, Georgia
| |
Collapse
|
9
|
De Gauquier P, Vanommeslaeghe K, Heyden YV, Mangelings D. Modelling approaches for chiral chromatography on polysaccharide-based and macrocyclic antibiotic chiral selectors: A review. Anal Chim Acta 2022; 1198:338861. [DOI: 10.1016/j.aca.2021.338861] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 07/12/2021] [Accepted: 07/19/2021] [Indexed: 12/25/2022]
|
10
|
Zhao Y, Zhu X, Jiang W, Liu H, Wang J, Sun B. Natural and Artificial Chiral-Based Systems for Separation Applications. Crit Rev Anal Chem 2021; 53:27-45. [PMID: 34152894 DOI: 10.1080/10408347.2021.1932408] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Chiral separation has attracted much attention for basic research and industrial applications in analytical chemistry. Generally, chiral separations use natural or artificial chiral-based materials as adsorbents. To improve the precision and efficiency of chiral separation, focus has shifted from natural and synthetic adsorbents to binary combinations of materials. This review specifically summarizes the significant advancements made in natural and artificial chiral adsorbents as promising candidates for diverse drug and biomolecule separation applications as well as the remaining drawbacks and challenges for research on chiral separations. The mechanisms of chiral-based recognition and separation and history and development of natural and artificial chiral-based systems are the focus of this review. Future directions in natural and artificial chiral-based systems for practical separations and other applications are also presented.
Collapse
Affiliation(s)
- Yuan Zhao
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing, China.,School of Food and Health, Beijing Technology and Business University, Beijing, China
| | - Xuecheng Zhu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing, China.,School of Food and Health, Beijing Technology and Business University, Beijing, China
| | - Wei Jiang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing, China.,School of Food and Health, Beijing Technology and Business University, Beijing, China
| | - Huilin Liu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing, China.,School of Food and Health, Beijing Technology and Business University, Beijing, China
| | - Jing Wang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing, China.,School of Food and Health, Beijing Technology and Business University, Beijing, China
| | - Baoguo Sun
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing, China.,School of Food and Health, Beijing Technology and Business University, Beijing, China
| |
Collapse
|
11
|
Enantiomeric resolution of quinolones on crown ether CSP: Thermodynamics, chiral discrimination mechanism and application in biological samples. J Chromatogr B Analyt Technol Biomed Life Sci 2021; 1166:122550. [PMID: 33545563 DOI: 10.1016/j.jchromb.2021.122550] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 01/03/2021] [Accepted: 01/10/2021] [Indexed: 11/21/2022]
Abstract
The enantiomers of quinolone racemates were resolved using chiral crown ether within 8 min. Thermodynamics data and modeling results were used to determine chiral recognition mechanism. The column used was (+)-Crownpack column (250 mm × 4.6 mm, 5 µm) with three mobile phases I: ACN:Water (80:20) + 10 mM H2SO4 and 10 mM CH3COONH4, II: ACN:Water (80:20) + 20 mM perchloric acid and III: EtOH:Water (80:20) + 20 mM perchloric acid. The flow rate of the mobile phases was 1.0 mL/min with UV detection at different wavelengths. The ranges of retention (k), separation (α), and resolution (Rs) factors were 1.00-5.40, 1.37-2.00 and 1.50-3.30. The tailing factor was 1.o for all peaks with 900-2325 as the number of theoretical plates were 8.0-10.0 and 32.4-22.1 µg. The difference in enthalpy, entropy and free energy varied in the range of -0.350 to -0.024, 18.74 × 10-4 to 3.94 × 10-4 and -0.918 to -0.143, respectively. The thermodynamic and docking results showed chiral discrimination due to physical forces of amnio group cations penetration into the chiral cavity of the chiral selector following hydrogen bindings. The binding energy of S-enantiomers was higher than R-enantiomers; confirming stronger binding of S-enantiomers with CSP than R-enantiomers. The described chiral-HPLC method was used for the analysis of the quinolone enantiomers in urine samples and the results were quite satisfactory. Therefore, the reported method may be used for the enantiomeric separation of quinolone enantiomers in urine samples.
Collapse
|
12
|
Shahnani M, Sefidbakht Y, Maghari S, Mehdi A, Rezadoost H, Ghassempour A. Enantioseparation of mandelic acid on vancomycin column: Experimental and docking study. Chirality 2020; 32:1289-1298. [PMID: 32797693 DOI: 10.1002/chir.23273] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Revised: 07/02/2020] [Accepted: 07/03/2020] [Indexed: 01/12/2023]
Abstract
So far, no detailed view has been expressed regarding the interactions between vancomycin and racemic compounds including mandelic acid. In the current study, a chiral stationary phase was prepared by using 3-aminopropyltriethoxysilane and succinic anhydride to graft carboxylated silica microspheres and subsequently by activating the carboxylic acid group for vancomycin immobilization. Characterization by elemental analysis, Fourier transform infrared spectroscopy, solid-state nuclear magnetic resonance, and thermogravimetric analysis demonstrated effective functionalization of the silica surface. R and S enantiomers of mandelic acid were separated by the synthetic vancomycin column. Finally, the interaction between vancomycin and R/S mandelic acid enantiomers was simulated by Auto-dock Vina. The binding energies of interactions between R and S enantiomers and vancomycin chiral stationary phase were different. In the most probable interaction, the difference in mandelic acid binding energy was approximately 0.2 kcal/mol. In addition, circular dichroism spectra of vancomycin interacting with R and S enantiomers showed different patterns. Therefore, R and S mandelic acid enantiomers may occupy various binding pockets and interact with different vancomycin functions. These observations emphasized the different retention of R and S mandelic acid enantiomers in vancomycin chiral column.
Collapse
Affiliation(s)
- Mostafa Shahnani
- Medicinal Plants and Drug Research Institute, Shahid Beheshti University, Evin, Tehran, Iran
| | - Yahya Sefidbakht
- Protein Research Center, Shahid Beheshti University Tehran, Tehran, Iran
| | - Shokoofeh Maghari
- Medicinal Plants and Drug Research Institute, Shahid Beheshti University, Evin, Tehran, Iran
| | - Ahmad Mehdi
- Institut Charles Gerhardt de Montpellier, UMR 5253, CNRS-ENSCM-UM, Université de Montpellier CC 1701, Montpellier, France
| | - Hassan Rezadoost
- Medicinal Plants and Drug Research Institute, Shahid Beheshti University, Evin, Tehran, Iran
| | - Alireza Ghassempour
- Medicinal Plants and Drug Research Institute, Shahid Beheshti University, Evin, Tehran, Iran
| |
Collapse
|
13
|
Salgın S, Çakal M, Salgın U. Kinetic resolution of racemic naproxen methyl ester by magnetic and non-magnetic cross-linked lipase aggregates. Prep Biochem Biotechnol 2019; 50:148-155. [PMID: 31647366 DOI: 10.1080/10826068.2019.1679178] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
In this study, the non-magnetic and the magnetic cross-linked enzyme aggregates (CLEAs) from Candida rugosa lipase were synthesized to catalyze the kinetic resolution reaction of naproxen methyl ester (NME). Magnetic iron oxide nanoparticles (MIONPs) were produced through co-precipitation method and their surfaces were modified by silanization reaction. The MIONPs were used as a platform to synthesize the magnetic CLEAs (M-CLEAs). The biocatalysts and MIONPs synthesized were characterized by FTIR spectroscopy and SEM analysis. The kinetic resolution of racemic NME was studied in aqueous buffer solution/isooctane biphasic system to compare the performance of M-CLEAs and CLEAs. The effects of reaction parameters such as temperature, pH, stirring rate on the enantiomeric excess of the substrate (ees%) were investigated in a batch reactor system. The activity recovery of CRL enzyme in CLEAs was higher than M-CLEAs. Compared with M-CLEAs, CLEAs biocatalysts had previously reached ees% values. Although both biocatalysts showed similar cavity structure from SEM analysis, the lower performance of M-CLEAs may be due to the different microenvironments of M-CLEAs from CLEAs. However, the reusability performance of M-CLEAs was higher than that of CLEAs. The optimal reaction conditions for M-CLEAs and CLEAs were found to be 37 °C, pH 7.5, and 300 rpm.
Collapse
Affiliation(s)
- Sema Salgın
- Department of Chemical Engineering, Faculty of Engineering, Sivas Cumhuriyet University, Sivas, Turkey
| | - Mustafa Çakal
- Department of Chemical Engineering, Faculty of Engineering, Sivas Cumhuriyet University, Sivas, Turkey
| | - Uğur Salgın
- Department of Chemical Engineering, Faculty of Engineering, Sivas Cumhuriyet University, Sivas, Turkey
| |
Collapse
|
14
|
Li J, Liu R, Wang L, Liu X, Gao H. Enantioseparation of chiral pharmaceuticals by vancomycin-bonded stationary phase and analysis of chiral recognition mechanism. Chirality 2019; 31:236-247. [DOI: 10.1002/chir.23052] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Revised: 12/25/2018] [Accepted: 12/27/2018] [Indexed: 01/17/2023]
Affiliation(s)
- Jiaxi Li
- State Key Laboratory of Environmental Criteria and Risk Assessment; Chinese Research Academy of Environmental Science; Beijing People's Republic of China
- Basin Research Center for Water Pollution Control; Chinese Research Academy of Environmental Science; Beijing People's Republic of China
| | - Ruixia Liu
- State Key Laboratory of Environmental Criteria and Risk Assessment; Chinese Research Academy of Environmental Science; Beijing People's Republic of China
- Basin Research Center for Water Pollution Control; Chinese Research Academy of Environmental Science; Beijing People's Republic of China
| | - Liyang Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment; Chinese Research Academy of Environmental Science; Beijing People's Republic of China
- Basin Research Center for Water Pollution Control; Chinese Research Academy of Environmental Science; Beijing People's Republic of China
| | - Xiaoling Liu
- State Key Laboratory of Environmental Criteria and Risk Assessment; Chinese Research Academy of Environmental Science; Beijing People's Republic of China
- Basin Research Center for Water Pollution Control; Chinese Research Academy of Environmental Science; Beijing People's Republic of China
| | - Hongjie Gao
- State Key Laboratory of Environmental Criteria and Risk Assessment; Chinese Research Academy of Environmental Science; Beijing People's Republic of China
- Basin Research Center for Water Pollution Control; Chinese Research Academy of Environmental Science; Beijing People's Republic of China
| |
Collapse
|
15
|
Yang C, Li J, Yao Y, Qing C, Shen B. Enantioseparation of Cinacalcet, and its Two Related Compounds by HPLC with Self-Made Chiral Stationary Phases and Chiral Mobile Phase Additives. CURR PHARM ANAL 2019. [DOI: 10.2174/1573412914666180518105046] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:
Cinacalcet is one of the second-generation calcimimetics which consists of a
chiral center. The pharmacological effect of R-cinacalcet is 1000 times greater than that of the Scinacalcet.
As mentioned in many literatures, 1-(1-naphthyl)ethylamine is used as the starting material
for the synthesis of cinacalcet. The absolute structure of cinacalcet is influenced by the starting materials.
Methods:
We present the chiral separation of cinacalcet and its starting material, 1-(1-naphthyl) ethylamine
along with one of its intermediates, N-(1-(naphthalen-1-yl) ethyl)-3- (3-(trifluoromethyl) phenyl)
propanamide by high-performance liquid chromatography with chiral stationary phase and chiral mobile
phase additives.
Results:
On vancomycin and cellulose tri 3,5-dimethylphenylcarbamate) chiral stationary phase, cinacalcet
and 1-(1-naphthyl)ethylamine achieved enantioseparation under normal phase with addition of
triethylamine additives, respectively. Meanwhile, 1-(1-naphthyl)ethylamine and N-(1-(naphthalen-1-
yl)ethyl)-3-(3-(trifluoromethyl) phenyl) propanamide achieved enantioseparation on 1-napthalene vancomycin
chiral stationary phase using D-tartaric acid, diethyl L-tartrate and diethyl D-tartrate as chiral
mobile phase additives.
Conclusion:
The chiral recognition in our experiment was based on the hydrogen-bonding, dipoledipole
and π-π interactions among the solutes, chiral stationary phases and chiral mobile phase additives.
In addition, the space adaptability of chiral stationary phases also affected the separation efficacy.
Collapse
Affiliation(s)
- Canyu Yang
- School of Pharmaceutical Science & Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, Yunnan 650500, China
| | - Ji Li
- School of Pharmaceutical Science & Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, Yunnan 650500, China
| | - Yanyun Yao
- Dali Nursing Vocational College, Dali, Yunnan, 671000, China
| | - Chen Qing
- School of Pharmaceutical Science & Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, Yunnan 650500, China
| | - Baochun Shen
- School of Pharmaceutical Science & Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, Yunnan 650500, China
| |
Collapse
|
16
|
Abstract
Stereospecific recognition of chiral molecules plays an important role in nature as the basis of the interaction of chiral bioactive compounds with the chiral target structures. In separation sciences such as chromatographic and capillary electromigration techniques, interactions between chiral analytes and chiral selectors, i.e., the formation of transient diastereomeric complexes in thermodynamic equilibria, are the basis for chiral separations. Due to the large structural variety of chiral selectors, different structural features contribute to the overall chiral recognition process. This introductory chapter briefly summarizes the present understanding of the structural enantioselective recognition processes for various types of chiral selectors.
Collapse
Affiliation(s)
- Gerhard K E Scriba
- Department of Pharmaceutical Chemistry, University of Jena, Jena, Germany.
| |
Collapse
|
17
|
High-Performance Liquid Chromatography Enantioseparations Using Macrocyclic Glycopeptide-Based Chiral Stationary Phases: An Overview. Methods Mol Biol 2019; 1985:201-237. [PMID: 31069737 DOI: 10.1007/978-1-4939-9438-0_12] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Since their introduction by Daniel W. Armstrong in 1994, antibiotic-based chiral stationary phases have proven their applicability for the chiral resolution of various types of racemates. The unique structure of macrocyclic glycopeptides and their large variety of interactive sites (e.g., hydrophobic pockets, hydroxy, amino and carboxyl groups, halogen atoms, aromatic moieties) are the reasons for their wide-ranging selectivity. The commercially available Chirobiotic™ phases, which display complementary characteristics, are capable of separating a broad variety of enantiomeric compounds with good efficiency, good column loadability, high reproducibility, and long-term stability. These are the major reasons for the frequent use of macrocyclic antibiotic-based stationary phases in HPLC enantioseparations.This overview chapter provides a brief summary of general aspects of antibiotic-based chiral stationary phases including their preparation and their application to direct enantioseparations of various racemates focusing on the literature published since 2004.
Collapse
|
18
|
Ali I, Suhail M, Asnin L. Chiral separation and modeling of quinolones on teicoplanin macrocyclic glycopeptide antibiotics CSP. Chirality 2018; 30:1304-1311. [PMID: 30321474 DOI: 10.1002/chir.23024] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 07/28/2018] [Accepted: 08/30/2018] [Indexed: 11/07/2022]
Abstract
New chiral high-performance liquid chromatography (HPLC) method for the enantiomeric resolution of quinolones is developed and described. The column used was Chirobiotic T (150 × 4.6 mm, 5.0 μm). Three mobile phases used were MeOH:ACN:Water:TEA (70:10:20:0.1%), (60:30:10:0.1%), and (50:30:20:0.1%). The flow rate of the mobile phases was 1.0 mL/min with UV detection at different wavelengths. The values of retention, resolution, and separation factors ranged from 1.5 to 6.0, 1.80 to 2.25, and 2.86 to 6.0, respectively. The limit of detection and quantification ranged from 4.0 to 12 ng and 40 to 52 ng, respectively. The modeling studies indicated strong interactions of R-enantiomers with teicoplanin chiral selector than S-enantiomers. The supra molecular mechanism of the chiral recognition was established by modeling and chromatographic studies. It was observed that hydrogen bondings and π-π interactions are the major forces for chiral separation. The present chiral HPLC method may be used for enantiomeric resolution of quinolones in any matrices.
Collapse
Affiliation(s)
- Imran Ali
- Department of Chemistry, Jamia Millia Islamia Central University, New Delhi, India
- Department of Chemistry, College of Sciences, Taibah University, Al-Medina, Saudi Arabia
| | - Mohd Suhail
- Department of Chemistry, Jamia Millia Islamia Central University, New Delhi, India
| | - Leonid Asnin
- Perm National Research Polytechnic University, Perm, Russia
| |
Collapse
|
19
|
Monier M, Shafik AL, Abdel-Latif D. Surface molecularly imprinted amino-functionalized alginate microspheres for enantio-selective extraction of l-ascorbic acid. Carbohydr Polym 2018; 195:652-661. [DOI: 10.1016/j.carbpol.2018.04.106] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 04/25/2018] [Accepted: 04/26/2018] [Indexed: 12/24/2022]
|
20
|
Synthesis and evaluation of enantio-selective l-histidine imprinted salicylic acid functionalized resin. REACT FUNCT POLYM 2018. [DOI: 10.1016/j.reactfunctpolym.2018.04.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
21
|
N L Batista A, M Dos Santos F, Batista JM, Cass QB. Enantiomeric Mixtures in Natural Product Chemistry: Separation and Absolute Configuration Assignment. Molecules 2018; 23:molecules23020492. [PMID: 29473869 PMCID: PMC6017502 DOI: 10.3390/molecules23020492] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 01/23/2018] [Accepted: 02/21/2018] [Indexed: 01/13/2023] Open
Abstract
Chiral natural product molecules are generally assumed to be biosynthesized in an enantiomerically pure or enriched fashion. Nevertheless, a significant amount of racemates or enantiomerically enriched mixtures has been reported from natural sources. This number is estimated to be even larger since the enantiomeric purity of secondary metabolites is rarely checked in the natural product isolation pipeline. This latter fact may have drastic effects on the evaluation of the biological activity of chiral natural products. A second bottleneck is the determination of their absolute configurations. Despite the widespread use of optical rotation and electronic circular dichroism, most of the stereochemical assignments are based on empirical correlations with similar compounds reported in the literature. As an alternative, the combination of vibrational circular dichroism and quantum chemical calculations has emerged as a powerful and reliable tool for both conformational and configurational analysis of natural products, even for those lacking UV-Vis chromophores. In this review, we aim to provide the reader with a critical overview of the occurrence of enantiomeric mixtures of secondary metabolites in nature as well the best practices for their detection, enantioselective separation using liquid chromatography, and determination of absolute configuration by means of vibrational circular dichroism and density functional theory calculations.
Collapse
Affiliation(s)
- Andrea N L Batista
- Department of Chemistry, Federal University of São Carlos-UFSCar, Rod. Washington Luis s/n, km 235, São Carlos, SP 13565-905, Brazil.
| | - Fernando M Dos Santos
- Department of Chemistry, Federal University of São Carlos-UFSCar, Rod. Washington Luis s/n, km 235, São Carlos, SP 13565-905, Brazil.
| | - João M Batista
- Department of Chemistry, Federal University of São Carlos-UFSCar, Rod. Washington Luis s/n, km 235, São Carlos, SP 13565-905, Brazil.
- Institute of Science and Technology, Federal University of São Paulo-UNIFESP, R. Talim 330, São José dos Campos, SP 12231-280, Brazil.
| | - Quezia B Cass
- Department of Chemistry, Federal University of São Carlos-UFSCar, Rod. Washington Luis s/n, km 235, São Carlos, SP 13565-905, Brazil.
| |
Collapse
|
22
|
Phyo YZ, Cravo S, Palmeira A, Tiritan ME, Kijjoa A, Pinto MMM, Fernandes C. Enantiomeric Resolution and Docking Studies of Chiral Xanthonic Derivatives on Chirobiotic Columns. Molecules 2018; 23:molecules23010142. [PMID: 29324676 PMCID: PMC6017832 DOI: 10.3390/molecules23010142] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 01/06/2018] [Accepted: 01/08/2018] [Indexed: 11/16/2022] Open
Abstract
A systematic study of enantioresolution of a library of xanthonic derivatives, prepared “in-house”, was successfully carried out with four commercially available macrocyclic glycopeptide-based columns, namely ChirobioticTM T, ChirobioticTM R, ChirobioticTM V and ChirobioticTM TAG. Evaluation was conducted in multimodal elution conditions: normal-phase, polar organic, polar ionic and reversed-phase. The effects of the mobile phase composition, the percentage of organic modifier, the pH of the mobile phase, the nature and concentration of different mobile phase additives on the chromatographic parameters are discussed. ChirobioticTM T and ChirobioticTM V, under normal-phase and reversed-phase modes, respectively, presented the best chromatographic parameters. Considering the importance of understanding the chiral recognition mechanisms associated with the chromatographic enantioresolution, and the scarce data available for macrocyclic glycopeptide-based columns, computational studies by molecular docking were also carried out.
Collapse
Affiliation(s)
- Ye' Zaw Phyo
- ICBAS-Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal.
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), Edifício do Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4050-208 Matosinhos, Portugal.
| | - Sara Cravo
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), Edifício do Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4050-208 Matosinhos, Portugal.
- Laboratório de Química Orgânica e Farmacêutica, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal.
| | - Andreia Palmeira
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), Edifício do Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4050-208 Matosinhos, Portugal.
- Laboratório de Química Orgânica e Farmacêutica, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal.
| | - Maria Elizabeth Tiritan
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), Edifício do Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4050-208 Matosinhos, Portugal.
- Laboratório de Química Orgânica e Farmacêutica, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal.
- CESPU, Instituto de Investigação e Formação Avançada em Ciências e Tecnologias da Saúde (IINFACTS), Rua Central de Gandra, 1317, 4585-116 Gandra PRD, Portugal.
| | - Anake Kijjoa
- ICBAS-Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal.
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), Edifício do Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4050-208 Matosinhos, Portugal.
| | - Madalena M M Pinto
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), Edifício do Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4050-208 Matosinhos, Portugal.
- Laboratório de Química Orgânica e Farmacêutica, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal.
| | - Carla Fernandes
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), Edifício do Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4050-208 Matosinhos, Portugal.
- Laboratório de Química Orgânica e Farmacêutica, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal.
| |
Collapse
|
23
|
Deng X, Li W, Ding G, Xue T, Chen X. Synthesis and Applications of Functionalized Magnetic Nanomaterials in Enantioseparation. SEPARATION AND PURIFICATION REVIEWS 2017. [DOI: 10.1080/15422119.2017.1419257] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Xiaojuan Deng
- School of Materials Science and Engineering, Tianjin University, Tianjin, China
- Analysis Center, Tianjin University, Tianjin, China
| | - Wenbin Li
- Dikma Technologies Inc., Tianjin, China
| | | | - Tao Xue
- Analysis Center, Tianjin University, Tianjin, China
| | | |
Collapse
|
24
|
Sanganyado E, Lu Z, Fu Q, Schlenk D, Gan J. Chiral pharmaceuticals: A review on their environmental occurrence and fate processes. WATER RESEARCH 2017; 124:527-542. [PMID: 28806704 DOI: 10.1016/j.watres.2017.08.003] [Citation(s) in RCA: 151] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2017] [Revised: 08/01/2017] [Accepted: 08/02/2017] [Indexed: 05/20/2023]
Abstract
More than 50% of pharmaceuticals in current use are chiral compounds. Enantiomers of the same pharmaceutical have identical physicochemical properties, but may exhibit differences in pharmacokinetics, pharmacodynamics and toxicity. The advancement in separation and detection methods has made it possible to analyze trace amounts of chiral compounds in environmental media. As a result, interest on chiral analysis and evaluation of stereoselectivity in environmental occurrence, phase distribution and degradation of chiral pharmaceuticals has grown substantially in recent years. Here we review recent studies on the analysis, occurrence, and fate of chiral pharmaceuticals in engineered and natural environments. Monitoring studies have shown ubiquitous presence of chiral pharmaceuticals in wastewater, surface waters, sediments, and sludge, particularly β-receptor antagonists, analgesics, antifungals, and antidepressants. Selective sorption and microbial degradation have been demonstrated to result in enrichment of one enantiomer over the other. The changes in enantiomer composition may also be caused by biologically catalyzed chiral inversion. However, accurate evaluation of chiral pharmaceuticals as trace environmental pollutants is often hampered by the lack of identification of the stereoconfiguration of enantiomers. Furthermore, a systematic approach including occurrence, fate and transport in various environmental matrices is needed to minimize uncertainties in risk assessment of chiral pharmaceuticals as emerging environmental contaminants.
Collapse
Affiliation(s)
- Edmond Sanganyado
- Department of Environmental Sciences, University of California, Riverside, CA, 92521, United States.
| | - Zhijiang Lu
- Department of Environmental Sciences, University of California, Riverside, CA, 92521, United States
| | - Qiuguo Fu
- Department of Environmental Sciences, University of California, Riverside, CA, 92521, United States; Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600, Dübendorf, Switzerland
| | - Daniel Schlenk
- Department of Environmental Sciences, University of California, Riverside, CA, 92521, United States
| | - Jay Gan
- Department of Environmental Sciences, University of California, Riverside, CA, 92521, United States
| |
Collapse
|
25
|
Gutierrez-Climente R, Gomez-Caballero A, Guerreiro A, Garcia-Mutio D, Unceta N, Goicolea MA, Barrio RJ. Molecularly imprinted nanoparticles grafted to porous silica as chiral selectors in liquid chromatography. J Chromatogr A 2017; 1508:53-64. [DOI: 10.1016/j.chroma.2017.05.066] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Revised: 05/25/2017] [Accepted: 05/30/2017] [Indexed: 12/14/2022]
|
26
|
Bystrická Z, Bystrický R, Lehotay J. Thermodynamic study of HPLC enantioseparations of some sulfur-containing amino acids on teicoplanin columns in ion-pairing reversed-phase mode. J LIQ CHROMATOGR R T 2016. [DOI: 10.1080/10826076.2016.1247715] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Zuzana Bystrická
- Institute of Medical Chemistry, Biochemistry and Clinical Biochemistry, Faculty of Medicine, Comenius University, Bratislava, Slovakia
| | - Roman Bystrický
- Institute of Inorganic Chemistry, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Jozef Lehotay
- Department of Chemistry, Faculty of Natural Science, University of SS. Cyril and Methodius, Trnava, Slovakia
| |
Collapse
|
27
|
Maia AS, Castro PML, Tiritan ME. Integrated liquid chromatography method in enantioselective studies: Biodegradation of ofloxacin by an activated sludge consortium. J Chromatogr B Analyt Technol Biomed Life Sci 2016; 1029-1030:174-183. [PMID: 27433982 DOI: 10.1016/j.jchromb.2016.06.026] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2016] [Revised: 06/12/2016] [Accepted: 06/15/2016] [Indexed: 01/11/2023]
Abstract
Ofloxacin is a chiral fluoroquinolone commercialized as racemate and as its enantiomerically pure form levofloxacin. This work presents an integrated liquid chromatography (LC) method with fluorescence detection (FD) and exact mass spectrometry (EMS) developed to assess the enantiomeric biodegradation of ofloxacin and levofloxacin in laboratory-scale microcosms. The optimized enantioseparation conditions were achieved using a macrocyclic antibiotic ristocetin A-bonded CSP (150×2.1mm i.d.; particle size 5μm) under reversed-phase elution mode. The method was validated using a mineral salts medium as matrix and presented selectivity and linearity over a concentration range from 5μgL(-1) (quantification limit) to 350μgL(-1) for each enantiomer. The method was successfully applied to evaluate biodegradation of ofloxacin enantiomers at 250μgL(-1) by an activated sludge inoculum. Ofloxacin (racemic mixture) and (S)-enantiomer (levofloxacin) were degraded up to 58 and 52%, respectively. An additional degradable carbon source, acetate, enhanced biodegradation up to 23%. (S)-enantiomer presented the highest extent of degradation (66.8%) when ofloxacin was supplied along with acetate. Results indicated slightly higher biodegradation extents for the (S)-enantiomer when supplementation was done with ofloxacin. Degradation occurred faster in the first 3days and proceeded slowly until the end of the assays. The chromatographic results from LC-FD suggested the formation of the (R)-enantiomer during levofloxacin biodegradation which was confirmed by LC-MS with a LTQ Orbitrap XL.
Collapse
Affiliation(s)
- Alexandra S Maia
- CESPU, Instituto de Investigação e Formação Avançada em Ciências e Tecnologias da Saúde, Rua Central de Gandra, 1317, 4585-116 Gandra PRD, Portugal; Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Rua Arquiteto Lobão Vital, Apartado 2511, 4202-401 Porto, Portugal
| | - Paula M L Castro
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Rua Arquiteto Lobão Vital, Apartado 2511, 4202-401 Porto, Portugal
| | - Maria Elizabeth Tiritan
- CESPU, Instituto de Investigação e Formação Avançada em Ciências e Tecnologias da Saúde, Rua Central de Gandra, 1317, 4585-116 Gandra PRD, Portugal; Laboratório de Química Orgânica e Farmacêutica, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal; Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR/CIMAR), Universidade do Porto, Rua dos Bragas 289, 4050-123 Porto, Portugal.
| |
Collapse
|
28
|
Dolzan MD, Shu Y, Smuts JP, Petersen H, Ellegaard P, Micke GA, Armstrong DW, Breitbach ZS. Enantiomeric separation of citalopram analogues by HPLC using macrocyclic glycopeptide and cyclodextrin based chiral stationary phases. J LIQ CHROMATOGR R T 2016. [DOI: 10.1080/10826076.2016.1141363] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Maressa D. Dolzan
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, Texas, USA
- Department of Chemistry, Federal University of Santa Catarina, Florianopolis, Santa Catarina, Brazil
| | - Yang Shu
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, Texas, USA
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Jonathan P. Smuts
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, Texas, USA
| | | | | | - Gustavo A. Micke
- Department of Chemistry, Federal University of Santa Catarina, Florianopolis, Santa Catarina, Brazil
| | - Daniel W. Armstrong
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, Texas, USA
| | - Zachary S. Breitbach
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, Texas, USA
| |
Collapse
|
29
|
Chiral analysis of aromatic amino acids in food supplements using subcritical fluid chromatography and Chirobiotic T2 column. J Supercrit Fluids 2016. [DOI: 10.1016/j.supflu.2015.06.027] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
30
|
Deáková Z, Ďuračková Z, Armstrong DW, Lehotay J. Two-dimensional high performance liquid chromatography for determination of homocysteine, methionine and cysteine enantiomers in human serum. J Chromatogr A 2015; 1408:118-24. [PMID: 26169904 DOI: 10.1016/j.chroma.2015.07.009] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Revised: 06/25/2015] [Accepted: 07/01/2015] [Indexed: 11/18/2022]
Abstract
A two-dimensional HPLC system with electrochemical detection was used for determination of homocysteine, methionine and cysteine enantiomers in biological samples. The amino acid separations were not possible only by using a chiral column. The compounds were separated from each other on an achiral column (Purospher RP-18 endcapped 250-4mm, 5μm) and their enantiomers were separated on Chirobiotic TAG (250-4.6mm, 5μm) column in an on-line system. The mobile phase composition and a choice of electrode potentials for detection were investigated. The l-enantiomers always eluted before the d-enantiomers. The proposed method was applied to the analysis of human serum of healthy volunteers and patients with multiple sclerosis. The limit of detection (LOD) and quantitation (LOQ) were defined as the concentration that produced a signal-to-noise ratio (S/N) of 3 and 10. The method LOD values were found to be between 0.05 and 0.50μgmL(-1). The range of LOQ values were between 0.17 and 1.67μgmL(-1), respectively.
Collapse
Affiliation(s)
- Zuzana Deáková
- Institute of Analytical Chemistry, Faculty of Chemical and Food Technology, Slovak University of Technology, Radlinského 9, 812 37 Bratislava, Slovakia; Institute of Medical Chemistry, Biochemistry and Clinical Biochemistry, Faculty of Medicine, Comenius University, Sasinkova 2, 811 08 Bratislava, Slovakia
| | - Zdeňka Ďuračková
- Institute of Medical Chemistry, Biochemistry and Clinical Biochemistry, Faculty of Medicine, Comenius University, Sasinkova 2, 811 08 Bratislava, Slovakia
| | - Daniel W Armstrong
- Department of Chemistry and Biochemistry, University of Texas at Arlington, 700 Planetarium Place, Arlington, TX 76019, USA
| | - Jozef Lehotay
- Institute of Analytical Chemistry, Faculty of Chemical and Food Technology, Slovak University of Technology, Radlinského 9, 812 37 Bratislava, Slovakia.
| |
Collapse
|
31
|
Diastereo- and enantioseparation of a Nα-Boc amino acid with a zwitterionic quinine-based stationary phase: Focus on the stereorecognition mechanism. Anal Chim Acta 2015; 885:174-82. [DOI: 10.1016/j.aca.2015.06.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Revised: 05/27/2015] [Accepted: 06/02/2015] [Indexed: 01/09/2023]
|
32
|
Mechanistic insights on chaotropic interactions of liophilic ions with basic pharmaceuticals in polar ionic mode liquid chromatography. J Chromatogr A 2014; 1368:82-8. [DOI: 10.1016/j.chroma.2014.09.054] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Revised: 09/18/2014] [Accepted: 09/19/2014] [Indexed: 11/19/2022]
|
33
|
Enantioseparation of chiral pharmaceuticals in biomedical and environmental analyses by liquid chromatography: An overview. J Chromatogr B Analyt Technol Biomed Life Sci 2014; 968:8-21. [DOI: 10.1016/j.jchromb.2014.02.049] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2013] [Revised: 02/23/2014] [Accepted: 02/28/2014] [Indexed: 11/23/2022]
|
34
|
Płotka JM, Biziuk M, Morrison C, Namieśnik J. Pharmaceutical and forensic drug applications of chiral supercritical fluid chromatography. Trends Analyt Chem 2014. [DOI: 10.1016/j.trac.2013.12.012] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
35
|
Pataj Z, Ilisz I, Grecsó N, Palkó M, Fülöp F, Armstrong DW, Péter A. Enantiomeric Separation of Bicyclo[2.2.2]octane-Based 2-Amino-3-Carboxylic Acids on Macrocyclic Glycopeptide Chiral Stationary Phases. Chirality 2014; 26:200-8. [DOI: 10.1002/chir.22301] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2013] [Revised: 12/09/2013] [Accepted: 12/26/2013] [Indexed: 12/19/2022]
Affiliation(s)
- Zoltán Pataj
- Department of Inorganic and Analytical Chemistry; University of Szeged; Szeged Hungary
| | - István Ilisz
- Department of Inorganic and Analytical Chemistry; University of Szeged; Szeged Hungary
| | - Nóra Grecsó
- Department of Inorganic and Analytical Chemistry; University of Szeged; Szeged Hungary
- Institute of Pharmaceutical Chemistry; University of Szeged; Szeged Hungary
| | - Márta Palkó
- Institute of Pharmaceutical Chemistry; University of Szeged; Szeged Hungary
| | - Ferenc Fülöp
- Institute of Pharmaceutical Chemistry; University of Szeged; Szeged Hungary
| | - Daniel W. Armstrong
- Department of Chemistry and Biochemistry; University of Texas at Arlington; Arlington TX USA
| | - Antal Péter
- Department of Inorganic and Analytical Chemistry; University of Szeged; Szeged Hungary
| |
Collapse
|
36
|
Sardella R, Ianni F, Lisanti A, Scorzoni S, Marini F, Sternativo S, Natalini B. Direct chromatographic enantioresolution of fully constrained β-amino acids: exploring the use of high-molecular weight chiral selectors. Amino Acids 2014; 46:1235-42. [PMID: 24500113 DOI: 10.1007/s00726-014-1683-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Accepted: 01/23/2014] [Indexed: 11/25/2022]
Abstract
To the best of our knowledge enantioselective chromatographic protocols on β-amino acids with polysaccharide-based chiral stationary phases (CSPs) have not yet appeared in the literature. Therefore, the primary objective of this work was the development of chromatographic methods based on the use of an amylose derivative CSP (Lux Amylose-2), enabling the direct normal-phase (NP) enantioresolution of four fully constrained β-amino acids. Also, the results obtained with the glycopeptide-type Chirobiotic T column employed in the usual polar-ionic (PI) mode of elution are compared with those achieved with the polysaccharide-based phase. The Lux Amylose-2 column, in combination with alkyl sulfonic acid containing NP eluent systems, prevailed over the Chirobiotic T one, when used under the PI mode of elution, and hence can be considered as the elective choice for the enantioseparation of this class of rigid β-amino acids. Moreover, the extraordinarily high α (up to 4.60) and R S (up to 10.60) values provided by the polysaccharidic polymer, especially when used with camphor sulfonic acid containing eluent systems, make it also suitable for preparative-scale enantioisolations.
Collapse
Affiliation(s)
- Roccaldo Sardella
- Dipartimento di Scienze Farmaceutiche, Università degli Studi di Perugia, Via Fabretti 48, 06123, Perugia, Italy
| | | | | | | | | | | | | |
Collapse
|
37
|
Schneider HJ, Agrawal P, Yatsimirsky AK. Supramolecular complexations of natural products. Chem Soc Rev 2014; 42:6777-800. [PMID: 23703643 DOI: 10.1039/c3cs60069f] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Complexations of natural products with synthetic receptors as well as the use of natural products as host compounds are reviewed, with an emphasis on possible practical uses or on biomedical significance. Applications such as separation, sensing, enzyme monitoring, and protection of natural drugs are first outlined. We then discuss examples of complexes with all important classes of natural compounds, such as amino acids, peptides, nucleosides/nucleotides, carbohydrates, catecholamines, flavonoids, terpenoids/steroids, alkaloids, antibiotics and toxins.
Collapse
Affiliation(s)
- Hans-Jörg Schneider
- FR Organische Chemie, Universität des Saarlandes, D 66041 Saarbrücken, Germany.
| | | | | |
Collapse
|
38
|
Wagdy HA, Hanafi RS, El-Nashar RM, Aboul-Enein HY. Enantiomeric Separation of Underivatized Amino Acids: Predictability of Chiral Recognition on Ristocetin A Chiral Stationary Phase. Chirality 2014; 26:132-5. [DOI: 10.1002/chir.22291] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Accepted: 12/02/2013] [Indexed: 11/09/2022]
Affiliation(s)
- Hebatallah A. Wagdy
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Biotechnology; German University in Cairo; Cairo Egypt
| | - Rasha S. Hanafi
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Biotechnology; German University in Cairo; Cairo Egypt
| | - Rasha M. El-Nashar
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Biotechnology; German University in Cairo; Cairo Egypt
- Chemistry Department, Faculty of Science; Cairo University; Giza Egypt
| | - Hassan Y. Aboul-Enein
- Pharmaceutical and Medicinal Chemistry, Pharmaceutical and Drug Industries Research Division; National Research Center (NRC); Cairo Egypt
| |
Collapse
|
39
|
Abstract
Chiral recognition phenomena play an important role in nature as well as analytical separation sciences. In separation sciences such as chromatography and capillary electrophoresis, enantiospecific interactions between the enantiomers of an analyte and the chiral selector are required in order to observe enantioseparations. Due to the large structural variety of chiral selectors applied, different mechanisms and structural features contribute to the chiral recognition process. This chapter briefly illustrates the current models of the enantiospecific recognition on the structural basics of various chiral selectors.
Collapse
Affiliation(s)
- Gerhard K E Scriba
- Department of Pharmaceutical/Medicinal Chemistry, Friedrich Schiller University Jena, Jena, Germany.
| |
Collapse
|
40
|
Abstract
Capillary electrophoresis (CE) has matured to one of the major liquid phase enantiodifferentiation techniques since the first report in 1985. This can be primarily attributed to the flexibility as well as the various modes available including electrokinetic chromatography (EKC), micellar electrokinetic chromatography (MEKC), and microemulsion electrokinetic chromatography (MEEKC). In contrast to chromatographic techniques, the chiral selector is mobile in the background electrolyte. Furthermore, a large variety of chiral selectors are available that can be easily combined in the same separation system. In addition, the migration order of the enantiomers can be adjusted by a number of approaches. In CE enantiodifferentiations the separation principle is comparable to chromatography while the principle of the movement of the analytes in the capillary is based on electrophoretic phenomena. The present chapter will focus on mechanistic aspects of CE enantioseparations including enantiomer migration order and the current understanding of selector-selectand structures. Selected examples of the basic enantioseparation modes EKC, MEKC, and MEEKC will be discussed.
Collapse
Affiliation(s)
- Gerhard K E Scriba
- Department of Pharmaceutical/Medicinal Chemistry, Friedrich Schiller University Jena, Philosophenweg 14, 07743, Jena, Germany,
| |
Collapse
|
41
|
Ribeiro AR, Afonso CM, Castro PML, Tiritan ME. Enantioselective biodegradation of pharmaceuticals, alprenolol and propranolol, by an activated sludge inoculum. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2013; 87:108-14. [PMID: 23131609 DOI: 10.1016/j.ecoenv.2012.10.009] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2012] [Revised: 10/10/2012] [Accepted: 10/11/2012] [Indexed: 05/22/2023]
Abstract
Biodegradation of chiral pharmaceuticals in the environment can be enantioselective. Thus quantification of enantiomeric fractions during the biodegradation process is crucial for assessing the fate of chiral pollutants. This work presents the biodegradation of alprenolol and propranolol using an activated sludge inoculum, monitored by a validated enantioselective HPLC method with fluorescence detection. The enantioseparation was optimized using a vancomycin-based chiral stationary phase under polar ionic mode. The method was validated using a minimal salts medium inoculated with activated sludge as matrix. The method was selective and linear in the range of 10-800 ng/ml, with a R²>0.99. The accuracy ranged from 85.0 percent to 103 percent, the recovery ranged from 79.9 percent to 103 percent, and the precision measured by the relative standard deviation (RSD) was <7.18 percent for intra-batch and <5.39 percent for inter-batch assays. The limits of quantification and detection for all enantiomers were 10 ng/ml and 2.5 ng/ml, respectively. The method was successfully applied to follow the biodegradation of the target pharmaceuticals using an activated sludge inoculum during a fifteen days assay. The results indicated slightly higher biodegradation rates for the S-enantiomeric forms of both beta-blockers. The presence of another carbon source maintained the enantioselective degradation pattern while enhancing biodegradation extent up to fourteen percent.
Collapse
Affiliation(s)
- Ana R Ribeiro
- Centro de Investigação em Ciências da Saúde do Instituto Superior de Ciências da Saúde-Norte-CICS-ISCS-N, CESPU, R. Central de Gandra 1317, 4585-116 Gandra PRD, Paredes, Portugal
| | | | | | | |
Collapse
|
42
|
Ilisz I, Aranyi A, Pataj Z, Péter A. Enantioseparations by high-performance liquid chromatography using macrocyclic glycopeptide-based chiral stationary phases: an overview. Methods Mol Biol 2013; 970:137-163. [PMID: 23283775 DOI: 10.1007/978-1-62703-263-6_8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Since their introduction by Armstrong in 1994, macrocyclic antibiotic-based chiral stationary phases have proven their applicability for the chiral resolution of various types of racemates. The unique structure of macrocyclic glycopeptides and their large variety of interactive sites (e.g., hydrophobic pockets, hydroxyl, amino and carboxyl groups, halogen atoms, aromatic moieties, etc.) are the reason for their wide-ranging selectivity. The commercially available Chirobiotic™ phases, which display complementary characteristics, are capable of separating a broad variety of enantiomeric compounds with good efficiency, good column loadability, high reproducibility, and long-term stability. These are the major reasons for the use of macrocyclic antibiotic-based stationary phases in HPLC enantioseparations. This overview chapter provides a brief summary of general aspects of macrocyclic antibiotic-based chiral stationary phases including their preparation and their application to direct enantioseparations of various racemates focusing on the literature published since 2004.
Collapse
Affiliation(s)
- István Ilisz
- Department of Inorganic and Analytical Chemistry, University of Szeged, Szeged, Hungary
| | | | | | | |
Collapse
|
43
|
Ravichandran S, Collins JR, Singh N, Wainer IW. A molecular model of the enantioselective liquid chromatographic separation of (R,S)-ifosfamide and its N-dechloroethylated metabolites on a teicoplanin aglycon chiral stationary phase. J Chromatogr A 2012; 1269:218-25. [PMID: 22917979 PMCID: PMC3513553 DOI: 10.1016/j.chroma.2012.08.019] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2012] [Revised: 08/03/2012] [Accepted: 08/06/2012] [Indexed: 11/25/2022]
Abstract
The enantioselective separations of the chiral oxazaphosphorines (R,S)-ifosfamide (IF), (R,S)-2-N-dechloroethyl-IF (2-DCE-IF) and (R,S)-3-N-dechloroethyl-IF (3-DCE-IF) were achieved on teicoplanin-based chiral stationary phase using isopropanol:methanol (60:40, v/v) as the mobile phase. Computational models of the teicoplanin and teicoplanin aglycon (TAG) chiral selectors were constructed and used in docking experiments to examine the chiral recognition mechanism associated with the observed resolutions. Initial data showed no significant differences between the simulated selector-selectand complexes using teicoplanin and TAG, and the full study was conducted using TAG. The data from the study indicate that hydrophobic interactions arise between the chlorine atom present in the cholorethyl moieties of the oxazaphosphorine molecules and hydrophobic pockets within the TAG basket and that these interactions anchored and positioned the selectands within the selector-selectand complexes. The complexes were stabilized through the formation of a network of hydrogen bond and cation-π interactions, in which the latter involved the phosphorous atom of the phosphoramide moiety and aromatic components of the TAG aglycon basket. The chirality of the oxazaphosphorine molecule determined the number and strength of the stabilizing interactions which resulted in significant differences in the relative mean binding energies between the complexes formed by the (R) and (S) enantiomers of the selectands. These differences were consistent with the observed chromatographic enantioselectivity and suggest a multi-step chrial recognition mechanism involving the tethering of the selectand to the selector followed by conformational adjustments and stabilization of the selectand-selector complex.
Collapse
Affiliation(s)
- Sarangan Ravichandran
- Advanced Biomedical Computing Center, Information Systems Program, SAIC-Frederick Inc., Frederick National Laboratory for Cancer Research(FNLCR), Frederick, MD 21702
| | - Jack R. Collins
- Advanced Biomedical Computing Center, Information Systems Program, SAIC-Frederick Inc., Frederick National Laboratory for Cancer Research(FNLCR), Frederick, MD 21702
| | - Nagendra Singh
- Laboratory of Clinical Investigatio, Intramural Research Program, National Institute on Aging, NIH, 251 Bayview Boulevard, Baltimore, MD 21224, USA
| | - Irving W. Wainer
- Laboratory of Clinical Investigatio, Intramural Research Program, National Institute on Aging, NIH, 251 Bayview Boulevard, Baltimore, MD 21224, USA
| |
Collapse
|
44
|
He X, Lin R, He H, Sun M, Xiao D. Chiral Separation of Ketoprofen on a Chirobiotic T Column and Its Chiral Recognition Mechanisms. Chromatographia 2012. [DOI: 10.1007/s10337-012-2352-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
45
|
Ilisz I, Pataj Z, Aranyi A, Péter A. Macrocyclic Antibiotic Selectors in Direct HPLC Enantioseparations. SEPARATION AND PURIFICATION REVIEWS 2012. [DOI: 10.1080/15422119.2011.596253] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
46
|
|
47
|
Fernandes C, Tiritan ME, Cass Q, Kairys V, Fernandes MX, Pinto M. Enantioseparation and chiral recognition mechanism of new chiral derivatives of xanthones on macrocyclic antibiotic stationary phases. J Chromatogr A 2012; 1241:60-8. [PMID: 22552201 DOI: 10.1016/j.chroma.2012.04.011] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2012] [Revised: 03/28/2012] [Accepted: 04/02/2012] [Indexed: 11/16/2022]
Abstract
A chiral HPLC method using four macrocyclic antibiotic chiral stationary phases (CSPs) has been investigated for determination of the enantiomeric purity of fourteen new chiral derivatives of xanthones (CDXs). The separations were performed with the CSPs Chirobiotic T, Chirobiotic TAG, Chirobiotic V and Chirobiotic R under multimodal elution conditions (normal-phase, reversed-phase and polar ionic mode). The analyses were performed at room temperature in isocratic mode and UV and CD detection at a wavelength of 254 nm. The best enantioselectivity and resolution were achieved on Chirobiotic R and Chirobiotic T CSPs, under normal elution conditions, with R(S) ranging from 1.25 to 2.50 and from 0.78 to 2.06, respectively. The optimized chromatographic conditions allowed the determination of the enantiomeric ratio of eight CDXs, always higher than 99%. In order to better understand the chromatographic behavior at a molecular level, and the structural features associated with the chiral recognition mechanism, computational studies by molecular docking were carried out using VDock. These studies shed light on the mechanisms involved in the enantioseparation for this important class of chiral compounds.
Collapse
Affiliation(s)
- Carla Fernandes
- Centro de Química Medicinal da Universidade do Porto-CEQUIMED-UP, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | | | | | | | | | | |
Collapse
|
48
|
Godoy-Alcántar C, Yatsimirsky AK. Biological Small Molecules as Receptors. Supramol Chem 2012. [DOI: 10.1002/9780470661345.smc065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
49
|
Yu D, Li J, Zhang Y, Wang H, Guo B, Zheng L. Enantioseletive bioaccumulation of tebuconazole in earthworm Eisenia fetida. J Environ Sci (China) 2012; 24:2198-2204. [PMID: 23534218 DOI: 10.1016/s1001-0742(11)61053-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Methods of extraction and determination of tebuconazole enantiomers in earthworm (Eisenia fetida) were developed by capillary electrophoresis (CE) and high performance liquid chromatography (HPLC). Both CE and HPLC have excellent resolution and recovery. The linearity ranges were 2.9-102.4 mg/kg and 3.0-99.6 mg/kg for (+)-R-tebuconazole and (-)-S-tebuconazole respectively in CE, and from 0.56 to 1000 mg/kg for both enantiomers in HPLC. Enantioselective bioaccumulation in earthworms from soil was investigated under laboratory condition at concentrations of 10 and 50 mg/kg dw in soil. The uptake kinetics of (+)-R-tebuconazole fitted the first-order kinetics well with r2 0.97 and 0.94 under 10 and 50 mg/kg dw exposure condition, respectively, while (-)-S-tebuconazole with r2 0.75 and 0.22 did not show the same. Bioaccumulation of tebuconazole in earthworm tissues was enantioselective with a preferential accumulation of (+)-R-tebuconazole. The (+)-R-tebuconazole might also have biomagnifying effect potential in earthworm food chain with biota-sediment accumulation factor (BSAF) of 1.64 kg OC/kg lip in 10 mg/kg dw exposure group and 2.61 kg OC/kg lip in 50 mg/kg dw exposure group from soil to earthworm after 36 days. Although (-)-S-tebuconazole shares the same physicochemical properties with (+)-R-tebuconazole, it did not biomagnify. BSAFs of (-)-S-tebuconazole were 0.50 kg OC/kg lip (10 mg/kg dw tebuconazole exposure) and 0.28 kg OC/kg lip (50 mg/kg dw tebuconazole exposure) after 36 days, which was possibly owing to biotransformation or metabolism in earthworm tissues.
Collapse
Affiliation(s)
- Dingyi Yu
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| | | | | | | | | | | |
Collapse
|
50
|
Seto T, Ozaki M, Nosaka S. Molecular Docking of Barbital Enantiomers to the Nicotinic Acetylcholine Receptor:Implications for the Mechanism of Anesthesia. CHEM-BIO INFORMATICS JOURNAL 2012. [DOI: 10.1273/cbij.12.14] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Tomoyoshi Seto
- Department of Anesthesiology, Shiga University of Medical Science
| | - Masayuki Ozaki
- Department of Anesthesiology, Shiga University of Medical Science
| | - Shuichi Nosaka
- Department of Anesthesiology, Shiga University of Medical Science
| |
Collapse
|