Zhang W, Teng M, Chen L. A review on the enantioselective distribution and toxicity of chiral pesticides in aquatic environment.
ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024;
46:317. [PMID:
39002095 DOI:
10.1007/s10653-024-02102-3]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 06/25/2024] [Indexed: 07/15/2024]
Abstract
Chiral pesticides account for about 40% of the total pesticides. In the process of using pesticides, it will inevitably flow into the surface water and even penetrate into the groundwater through surface runoff and other means, as a consequence, it affects the water environment. Although the enantiomers of chiral pesticides have the same physical and chemical properties, their distribution, ratio, metabolism, toxicity, etc. in the organism are often different, and sometimes even show completely opposite biological activities. In this article, the selective fate of different types of chiral pesticides such as organochlorine, organophosphorus, triazole, pyrethroid and other chiral pesticides in natural water bodies and sediments, acute toxicity to aquatic organisms, chronic toxicity and other aspects are summarized to further reflect the risks between the enantiomers of chiral pesticides to non-target organisms in the water environment. In this review, we hope to further explore its harm to human society through the study of the toxicity of chiral pesticide enantiomers, so as to provide data support and theoretical basis for the development and production of biochemical pesticides.
Collapse