1
|
Wang F, He K, Wang R, Ma H, Marriott PJ, Hill MR, Simon GP, Holl MMB, Wang H. A Homochiral Porous Organic Cage-Polymer Membrane for Enantioselective Resolution. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2400709. [PMID: 38721928 DOI: 10.1002/adma.202400709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 05/07/2024] [Indexed: 05/21/2024]
Abstract
Membrane-based enantioselective separation is a promising method for chiral resolution due to its low cost and high efficiency. However, scalable fabrication of chiral separation membranes displaying both high enantioselectivity and high flux of enantiomers is still a challenge. Here, the authors report the preparation of homochiral porous organic cage (Covalent cage 3 (CC3)-R)-based enantioselective thin-film-composite membranes using polyamide (PA) as the matrix, where fully organic and solvent-processable cage crystals have good compatibility with the polymer scaffold. The hierarchical CC3-R channels consist of chiral selective windows and inner cavities, leading to favorable chiral resolution and permeation of enantiomers; the CC3-R/PA composite membranes display an enantiomeric excess of 95.2% for R-(+)-limonene over S-(-)-limonene and a high flux of 99.9 mg h-1 m-2. This work sheds light on the use of homochiral porous organic cages for preparing enantioselective membranes and demonstrates a new route for the development of next-generation chiral separation membranes.
Collapse
Affiliation(s)
- Fanmengjing Wang
- Department of Chemical and Biological Engineering, Monash University, Clayton, Victoria, 3800, Australia
| | - Kaiqiang He
- Department of Chemical and Biological Engineering, Monash University, Clayton, Victoria, 3800, Australia
| | - Ruoxin Wang
- Department of Chemical and Biological Engineering, Monash University, Clayton, Victoria, 3800, Australia
| | - Hongyu Ma
- Department of Chemical and Biological Engineering, Monash University, Clayton, Victoria, 3800, Australia
| | - Philip J Marriott
- School of Chemistry, Monash University, Clayton, Victoria, 3800, Australia
| | - Matthew R Hill
- Department of Chemical and Biological Engineering, Monash University, Clayton, Victoria, 3800, Australia
| | - George P Simon
- Department of Materials Science and Engineering, Monash University, Clayton, Victoria, 3800, Australia
| | - Mark M Banaszak Holl
- Department of Mechanical and Materials Engineering, The University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Huanting Wang
- Department of Chemical and Biological Engineering, Monash University, Clayton, Victoria, 3800, Australia
| |
Collapse
|
2
|
Li M, Zhang L, Wu B, Hong M. High-Enantioselectivity Adsorption Separation of Racemic Mandelic Acid and Methyl Mandelate by Robust Chiral UiO-68-Type Zr-MOFs. Inorg Chem 2024; 63:381-389. [PMID: 38150656 DOI: 10.1021/acs.inorgchem.3c03277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2023]
Abstract
Mandelic acid and its analogues are highly valuable medical intermediates and play an important role in the pharmaceutical industry, biochemistry, and life sciences. Therefore, effective enantioselective recognition and separation of mandelic acid are of great significance. In this study, two of our recently reported chiral amine-alcohol-functionalized UiO-68-type Zr-HMOFs 1 and 3 with high chemical stability, abundant binding sites, and large chiral pores were selected as chiral selectors for the enantioselective separation of mandelic acid (MA), methyl mandelate (MM), and other chiral molecules containing only one phenyl. Materials 1 and 3 exhibited excellent enantioselective separation performance for MA and MM. Especially for the separation of racemate MA, the enantiomeric excess values reached 97.3 and 98.9%, which are the highest reported values so far. Experimental and density functional theory (DFT) computational results demonstrated that the introduction of additional phenyls on the chiral amine alcohol pendants in 3 had somewhat impact on the enantioselective adsorption and separation of MA or MM compared with 1, but it was not significant. Further research on the enantioselective separation of those chiral adsorbates containing only one phenyl by material 1 indicated the crucial role of the groups directly bonded to the chiral carbons of the adsorbates in the selective separation of enantiomers, especially showing higher enantioselectivity for the adsorbates with two hydrogen-bonding groups directly bonded to its chiral carbon.
Collapse
Affiliation(s)
- Mengna Li
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Lei Zhang
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Benlai Wu
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Maochun Hong
- State Key Laboratory of Structural Chemistry, Fujian Institute of the Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, Fujian, P. R. China
| |
Collapse
|
3
|
Wang F, Pizzi D, Lu Y, He K, Thurecht KJ, Hill MR, Marriott PJ, Banaszak Holl MM, Kempe K, Wang H. A Homochiral Poly(2-oxazoline)-based Membrane for Efficient Enantioselective Separation. Angew Chem Int Ed Engl 2023; 62:e202212139. [PMID: 36577702 PMCID: PMC10107185 DOI: 10.1002/anie.202212139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 12/18/2022] [Accepted: 12/28/2022] [Indexed: 12/30/2022]
Abstract
Chiral separation membranes have shown great potential for the efficient separation of racemic mixtures into enantiopure components for many applications, such as in the food and pharmaceutical industries; however, scalable fabrication of membranes with both high enantioselectivity and flux remains a challenge. Herein, enantiopure S-poly(2,4-dimethyl-2-oxazoline) (S-PdMeOx) macromonomers were synthesized and used to prepare a new type of enantioselective membrane consisting of a chiral S-PdMeOx network scaffolded by graphene oxide (GO) nanosheets. The S-PdMeOx-based membrane showed a near-quantitative enantiomeric excess (ee) (98.3±1.7 %) of S-(-)-limonene over R-(+)-limonene and a flux of 0.32 mmol m-2 h-1 . This work demonstrates the potential of homochiral poly(2,4-disubstituted-2-oxazoline)s in chiral discrimination and provides a new route to the development of highly efficient enantioselective membranes using synthetic homochiral polymer networks.
Collapse
Affiliation(s)
- Fanmengjing Wang
- Department of Chemical and Biological EngineeringMonash University3800ClaytonVictoriaAustralia
| | - David Pizzi
- Drug DeliveryDisposition and DynamicsMonash Institute of Pharmaceutical SciencesMonash University3052ParkvilleVICAustralia
| | - Yizhihao Lu
- CAS Key Laboratory of Bio-Inspired Materials and Interfacial ScienceTechnical Institute of Physics and ChemistryChinese Academy of Sciences100190BeijingP. R. China
| | - Kaiqiang He
- Department of Chemical and Biological EngineeringMonash University3800ClaytonVictoriaAustralia
| | - Kristofer J. Thurecht
- Centre for Advanced Imaging (CAI) and Australian Institute for Bioengineering and NanotechnologyARC Training Centre for Innovation in Biomedical Imaging TechnologyThe University of Queensland4072St. LuciaQLDAustralia
| | - Matthew R. Hill
- Department of Chemical and Biological EngineeringMonash University3800ClaytonVictoriaAustralia
| | | | - Mark M. Banaszak Holl
- Department of Chemical and Biological EngineeringMonash University3800ClaytonVictoriaAustralia
| | - Kristian Kempe
- Drug DeliveryDisposition and DynamicsMonash Institute of Pharmaceutical SciencesMonash University3052ParkvilleVICAustralia
- Materials Science and EngineeringMonash University3800ClaytonVictoriaAustralia
| | - Huanting Wang
- Department of Chemical and Biological EngineeringMonash University3800ClaytonVictoriaAustralia
| |
Collapse
|
4
|
Pu J, Wang H, Huang C, Bo C, Gong B, Ou J. Progress of molecular imprinting technique for enantioseparation of chiral drugs in recent ten years. J Chromatogr A 2022; 1668:462914. [DOI: 10.1016/j.chroma.2022.462914] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 02/10/2022] [Accepted: 02/17/2022] [Indexed: 12/22/2022]
|
5
|
|
6
|
Abstract
Rosy prospects of chiral membranes are proposed with novel and robust materials.
Collapse
Affiliation(s)
- Hongda Han
- School of Science
- Tianjin Key Laboratory of Molecular Optoelectronic Science
- Department of Chemistry
- Collaborative Innovation Center of Chemical Science and Engineering
- Tianjin University
| | - Wei Liu
- School of Science
- Tianjin Key Laboratory of Molecular Optoelectronic Science
- Department of Chemistry
- Collaborative Innovation Center of Chemical Science and Engineering
- Tianjin University
| | - Yin Xiao
- School of Chemical Engineering and Technology
- Tianjin Engineering Research Center of Functional Fine Chemicals
- Tianjin University
- Tianjin 300072
- P. R. China
| | - Xiaofei Ma
- School of Science
- Tianjin Key Laboratory of Molecular Optoelectronic Science
- Department of Chemistry
- Collaborative Innovation Center of Chemical Science and Engineering
- Tianjin University
| | - Yong Wang
- School of Science
- Tianjin Key Laboratory of Molecular Optoelectronic Science
- Department of Chemistry
- Collaborative Innovation Center of Chemical Science and Engineering
- Tianjin University
| |
Collapse
|
7
|
Gu L, Chen Q, Li X, Meng C, Liu H. Enantioseparation processes and mechanisms in functionalized graphene membranes: Facilitated or retarded transport? Chirality 2020; 32:842-853. [PMID: 32073697 DOI: 10.1002/chir.23190] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 02/04/2020] [Accepted: 02/05/2020] [Indexed: 12/24/2022]
Abstract
Up to date, functionalized graphene-based membranes have exhibited a promising potential in the enantioseparation. However, since precisely controlling the interlayer distance of two-dimensional materials is a great challenge in practical experiments, the transport mechanism of chiral guests in such membranes, together with various critical parameters that play a controlling role in the transport behaviors of the preferentially binding enantiomer in narrow channels, remains to be explored. The molecular dynamics (MD) simulation, especially using the steered MD (SMD) method, might be an alternative way to investigate the enantioseparation processes and mechanisms of layered membranes with different interlayer distances. In this work, D-alanine modified graphene sheets with different interlayer distances were built as membrane models, whereas D- and L-phenylalanine were selected as chiral probes. The effect of the interlayer distance and the applied external force on the enantioseparation performance was examined. Results show that such two parameters exert a significant influence on the enantioseparation performance: (a) Increasing the interlayer distance would result in a conversion from the retarded to the facilitated mechanism at a proper external force (medium); (b) both the large and small driving forces would only lead to the appearance of the retarded transport for the preferential enantiomer, unlike the moderate force; (c) the interaction energy of L-phenylalanine with D-isomer selector decreases with the rising interlayer distances studied in this work, regardless of what the external force is. Our findings can provide guidance on the practical applications in the membrane-based chiral separation.
Collapse
Affiliation(s)
- Liangning Gu
- State Key Laboratory of Chemical Engineering and School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai, China
| | - Qibin Chen
- State Key Laboratory of Chemical Engineering and School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai, China
| | - Xiaoxiao Li
- State Key Laboratory of Chemical Engineering and School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai, China
| | - Chenchen Meng
- State Key Laboratory of Chemical Engineering and School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai, China
| | - Honglai Liu
- State Key Laboratory of Chemical Engineering and School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai, China
| |
Collapse
|
8
|
Cai P, Gao Z, Yin X, Luo Y, Zhao X, Pan Y. Facile enantioseparation and recognition of mandelic acid and its derivatives in self‐assembly interaction with chiral ionic liquids. J Sep Sci 2019; 42:3589-3598. [DOI: 10.1002/jssc.201900584] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 09/19/2019] [Accepted: 09/20/2019] [Indexed: 12/18/2022]
Affiliation(s)
- Pengfei Cai
- Department of ChemistryZhejiang University Hangzhou P. R. China
| | - Zhan Gao
- Department of ChemistryZhejiang University Hangzhou P. R. China
| | - Xinchi Yin
- Department of ChemistryZhejiang University Hangzhou P. R. China
| | - Yuanqing Luo
- Department of ChemistryZhejiang University Hangzhou P. R. China
| | - Xiaoyong Zhao
- Department of ChemistryZhejiang University Hangzhou P. R. China
| | - Yuanjiang Pan
- Department of ChemistryZhejiang University Hangzhou P. R. China
| |
Collapse
|
9
|
Li H, Huang Q, Li D, Li S, Wu X, Wen L, Ban C. Generation of a Molecular Imprinted Membrane by Coating Cellulose Acetate onto a ZrO2-Modified Alumina Membrane for the Chiral Separation of Mandelic Acid Enantiomers. Org Process Res Dev 2018. [DOI: 10.1021/acs.oprd.7b00054] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Huichang Li
- School of Chemical Engineering and Energy, Zhengzhou University, Zhengzhou 450001, P.R. China
| | - Qiang Huang
- School of Chemical Engineering and Energy, Zhengzhou University, Zhengzhou 450001, P.R. China
| | - Dan Li
- School of Chemical Engineering and Energy, Zhengzhou University, Zhengzhou 450001, P.R. China
| | - Shujie Li
- School of Chemical Engineering and Energy, Zhengzhou University, Zhengzhou 450001, P.R. China
| | - Xiaoru Wu
- School of Chemical Engineering and Energy, Zhengzhou University, Zhengzhou 450001, P.R. China
| | - Longfei Wen
- School of Chemical Engineering and Energy, Zhengzhou University, Zhengzhou 450001, P.R. China
| | - Chunlan Ban
- School of Chemical Engineering and Energy, Zhengzhou University, Zhengzhou 450001, P.R. China
| |
Collapse
|
10
|
Deng X, Li W, Ding G, Chen X. Enantioselective separation of RS-mandelic acid using β-cyclodextrin modified Fe3O4@SiO2/Au microspheres. Analyst 2018; 143:2665-2673. [DOI: 10.1039/c8an00427g] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
β-Cyclodextrin functionalized magnetic microspheres were prepared via a self-assembly method and applied for the enantioselective absorption of enantiomers.
Collapse
Affiliation(s)
- Xiaojuan Deng
- School of Materials Science and Engineering
- Tianjin University
- Tianjin 300072
- China
- Analysis Center
| | | | | | | |
Collapse
|
11
|
Yuan LM, Ma W, Xu M, Zhao HL, Li YY, Wang RL, Duan AH, Ai P, Chen XX. Optical resolution and mechanism using enantioselective cellulose, sodium alginate and hydroxypropyl-β-cyclodextrin membranes. Chirality 2017; 29:315-324. [DOI: 10.1002/chir.22693] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Revised: 12/24/2016] [Accepted: 01/07/2017] [Indexed: 11/06/2022]
Affiliation(s)
- Li-Ming Yuan
- School of Chemistry and Chemical Engineering; Yunnan Normal University; Kunming People's Republic of China
| | - Wei Ma
- School of Chemistry and Chemical Engineering; Yunnan Normal University; Kunming People's Republic of China
| | - Mei Xu
- School of Chemistry and Chemical Engineering; Yunnan Normal University; Kunming People's Republic of China
| | - Hui-Lin Zhao
- School of Chemistry and Chemical Engineering; Yunnan Normal University; Kunming People's Republic of China
| | - Yuan-Yuan Li
- School of Chemistry and Chemical Engineering; Yunnan Normal University; Kunming People's Republic of China
| | - Rui-Lin Wang
- School of Chemistry and Chemical Engineering; Yunnan Normal University; Kunming People's Republic of China
| | - Ai-Hong Duan
- School of Chemistry and Chemical Engineering; Yunnan Normal University; Kunming People's Republic of China
| | - Ping Ai
- School of Chemistry and Chemical Engineering; Yunnan Normal University; Kunming People's Republic of China
| | - Xue-Xian Chen
- School of Chemistry and Chemical Engineering; Yunnan Normal University; Kunming People's Republic of China
| |
Collapse
|
12
|
|
13
|
Shen C, Lan X, Lu X, Ni W, Wang Q. Tuning the structural asymmetries of three-dimensional gold nanorod assemblies. Chem Commun (Camb) 2015; 51:13627-9. [DOI: 10.1039/c5cc05295e] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A series of 3D AuNR dimers and trimers were fabricated under the guidance of DNA origami.
Collapse
Affiliation(s)
- Chenqi Shen
- Key Laboratory of Nano-Bio Interface
- Division of Nanobiomedicine and i-Lab
- Suzhou Institute of Nano-Tech and Nano-Bionics
- Chinese Academy of Sciences
- Suzhou 215123
| | - Xiang Lan
- Key Laboratory of Nano-Bio Interface
- Division of Nanobiomedicine and i-Lab
- Suzhou Institute of Nano-Tech and Nano-Bionics
- Chinese Academy of Sciences
- Suzhou 215123
| | - Xuxing Lu
- Key Laboratory of Nano-Bio Interface
- Division of Nanobiomedicine and i-Lab
- Suzhou Institute of Nano-Tech and Nano-Bionics
- Chinese Academy of Sciences
- Suzhou 215123
| | - Weihai Ni
- Key Laboratory of Nano-Bio Interface
- Division of Nanobiomedicine and i-Lab
- Suzhou Institute of Nano-Tech and Nano-Bionics
- Chinese Academy of Sciences
- Suzhou 215123
| | - Qiangbin Wang
- Key Laboratory of Nano-Bio Interface
- Division of Nanobiomedicine and i-Lab
- Suzhou Institute of Nano-Tech and Nano-Bionics
- Chinese Academy of Sciences
- Suzhou 215123
| |
Collapse
|
14
|
Shipovskaya AB, Gegel’ NO, Shchegolev SY. Modification of cellulose acetates for preparing chiral sorbents. RUSS J APPL CHEM+ 2014. [DOI: 10.1134/s1070427214090225] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
15
|
|
16
|
Preparation, characterization and application of a chiral thermo-sensitive membrane for phenylalanine separation of the racemic mixture. JOURNAL OF POLYMER RESEARCH 2014. [DOI: 10.1007/s10965-014-0475-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
17
|
Ignacio-de Leon PA, Abelow AE, Cichelli JA, Zhukov A, Stoikov II, Zharov I. Silica Colloidal Membranes with Enantioselective Permeability. Isr J Chem 2014. [DOI: 10.1002/ijch.201400031] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
18
|
Li W, Li Y, Fu Y, Zhang J. Enantioseparation of chiral ofloxacin using biomacromolecules. KOREAN J CHEM ENG 2013. [DOI: 10.1007/s11814-013-0048-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
19
|
Fu Y, Huang T, Chen B, Shen J, Duan X, Zhang J, Li W. Enantioselective resolution of chiral drugs using BSA functionalized magnetic nanoparticles. Sep Purif Technol 2013. [DOI: 10.1016/j.seppur.2013.01.007] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
20
|
El Seoud OA, Nawaz H, Arêas EPG. Chemistry and applications of polysaccharide solutions in strong electrolytes/dipolar aprotic solvents: an overview. Molecules 2013; 18:1270-313. [PMID: 23337297 PMCID: PMC6270342 DOI: 10.3390/molecules18011270] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2012] [Revised: 01/02/2013] [Accepted: 01/09/2013] [Indexed: 11/24/2022] Open
Abstract
Biopolymers and their derivatives are being actively investigated as substitutes for petroleum-based polymers. This has generated an intense interest in investigating new solvents, in particular for cellulose, chitin/chitosan, and starch. This overview focuses on recent advances in the dissolution and derivatization of these polysaccharides in solutions of strong electrolytes in dipolar aprotic solvents. A brief description of the molecular structures of these biopolymers is given, with emphases on the properties that are relevant to derivatization, namely crystallinity and accessibility. The mechanism of cellulose dissolution is then discussed, followed by a description of the strategies employed for the synthesis of cellulose derivatives (carboxylic acid esters, and ethers) under homogeneous reaction conditions. The same sequence of presentation has been followed for chitin/chitosan and starch. Future perspectives for this subject are summarized, in particular with regard to compliance with the principles of green chemistry.
Collapse
|
21
|
Platinum-encapsulated zeolitically microcapsular catalyst for one-pot dynamic kinetic resolution of phenylethylamine. J Catal 2012. [DOI: 10.1016/j.jcat.2012.04.008] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|