1
|
Rashmi, Hasheminejad H, Herziger S, Mirzaalipour A, Singh AK, Netz RR, Böttcher C, Makki H, Sharma SK, Haag R. Supramolecular Engineering of Alkylated, Fluorinated, and Mixed Amphiphiles. Macromol Rapid Commun 2022; 43:e2100914. [PMID: 35239224 DOI: 10.1002/marc.202100914] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 02/08/2022] [Indexed: 11/11/2022]
Abstract
The rational design of perfluorinated amphiphiles to control the supramolecular aggregation in aqueous medium is still a key challenge for the engineering of supramolecular architectures. Here we present the synthesis and physical properties of six novel non-ionic amphiphiles. We also studied the effect of mixed alkylated and perfluorinated segments in a single amphiphile and compared it with only alkylated and perfluorinated units. To explore their morphological behavior in aqueous medium, we used dynamic light scattering (DLS) and cryo-TEM/EM measurements. We further confirmed their assembly mechanisms with theoretical investigations, using the Martini model to perform large-scale coarse-grained molecular dynamics simulations. These novel synthesized amphiphiles offer a greater and more systematic understanding of how perfluorinated systems assemble in aqueous medium and suggest new directions for rational designing of new amphiphilic systems and interpreting their assembly process. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Rashmi
- Department of Chemistry, University of Delhi, Delhi, 110 007, India.,Institut für Chemie und Biochemie, Organische Chemie, Freie Universität Berlin, Takustraße 3, Berlin, 14195, Germany
| | - Hooman Hasheminejad
- Department of Polymer and Color Engineering, Amirkabir University of Technology, Tehran, Iran
| | - Svenja Herziger
- Forschungszentrum für Elektronenmikroskopie, Institut für Chemie und Biochemie, Freie Universität Berlin, Fabeckstraße 36a, Berlin, 14195, Germany
| | - Alireza Mirzaalipour
- Department of Polymer and Color Engineering, Amirkabir University of Technology, Tehran, Iran
| | - Abhishek K Singh
- Institut für Chemie und Biochemie, Organische Chemie, Freie Universität Berlin, Takustraße 3, Berlin, 14195, Germany
| | - Roland R Netz
- Freie Universität Berlin, Fachbereich Physik, Berlin, 14195, Germany
| | - Christoph Böttcher
- Forschungszentrum für Elektronenmikroskopie, Institut für Chemie und Biochemie, Freie Universität Berlin, Fabeckstraße 36a, Berlin, 14195, Germany
| | - Hesam Makki
- Department of Polymer and Color Engineering, Amirkabir University of Technology, Tehran, Iran
| | - Sunil K Sharma
- Department of Chemistry, University of Delhi, Delhi, 110 007, India
| | - Rainer Haag
- Institut für Chemie und Biochemie, Organische Chemie, Freie Universität Berlin, Takustraße 3, Berlin, 14195, Germany
| |
Collapse
|
2
|
Bravin C, Mazzeo G, Abbate S, Licini G, Longhi G, Zonta C. Helicity control of a perfluorinated carbon chain within a chiral supramolecular cage monitored by VCD. Chem Commun (Camb) 2022; 58:2152-2155. [PMID: 35059695 DOI: 10.1039/d1cc06861j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Confinement within supramolecular systems is the leading technology to finely tune guest functional properties. In this communication we report the synthesis of a chiral supramolecular cage able to bias the helicity of a perfluorinated carbon chain hosted within the cage. We monitor the phenomenon of chiral induction by Vibrational Circular Dichroism (VCD) experiments complemented by DFT calculations over the possible conformers.
Collapse
Affiliation(s)
- Carlo Bravin
- Dipartimento di Scienze Chimiche, Università degli Studi di Padova, Padova, PD, Italy.
| | - Giuseppe Mazzeo
- Department of Molecular and Translational Medicine, Università di Brescia, Viale Europa 11, 25123 Brescia, BS, Italy.
| | - Sergio Abbate
- Department of Molecular and Translational Medicine, Università di Brescia, Viale Europa 11, 25123 Brescia, BS, Italy.
| | - Giulia Licini
- Dipartimento di Scienze Chimiche, Università degli Studi di Padova, Padova, PD, Italy.
| | - Giovanna Longhi
- Department of Molecular and Translational Medicine, Università di Brescia, Viale Europa 11, 25123 Brescia, BS, Italy.
| | - Cristiano Zonta
- Dipartimento di Scienze Chimiche, Università degli Studi di Padova, Padova, PD, Italy.
| |
Collapse
|
3
|
Wu L, Liu W, Li Y, Yang Y. Self-assembly driven chiral transfer from a dipeptide to the twist and stacking handedness of cyanobiphenylyl groups. NEW J CHEM 2022. [DOI: 10.1039/d2nj01259f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The chiral transfer phenomenon was studied on four Ala–Ala lipodipeptides with a cyanobiphenylyl group at the terminal alkyl chain.
Collapse
Affiliation(s)
- Lijia Wu
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, Key Laboratory of Polymeric Materials Design and Synthesis for Biomedical Function, Department of Polymer Science and Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Wei Liu
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, Key Laboratory of Polymeric Materials Design and Synthesis for Biomedical Function, Department of Polymer Science and Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Yi Li
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, Key Laboratory of Polymeric Materials Design and Synthesis for Biomedical Function, Department of Polymer Science and Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Yonggang Yang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, Key Laboratory of Polymeric Materials Design and Synthesis for Biomedical Function, Department of Polymer Science and Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| |
Collapse
|
4
|
Yamagishi H, Sato H, Kawamura I. Vibrational circular dichroism of D-amino acid-containing peptide NdWFamide in the crystal form. Chirality 2021; 33:652-659. [PMID: 34313360 DOI: 10.1002/chir.23343] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 07/02/2021] [Accepted: 07/08/2021] [Indexed: 01/31/2023]
Abstract
Microcrystals of l-Asn-d-Trp-l-Phe-NH2 (NdWFamide), a tripeptide derived from Aplysia kurodai that exhibits invertebrate cardiac activity, were evaluated by vibrational circular dichroism (VCD). The chirality of the tryptophan residue at the second position in NdWFamide was associated with the conformation and biological characteristics. The VCD spectrum of NdWFamide was a mirror image of its enantiomer; however, it was significantly different from that of its diastereomer, NWFamide, which is its precursor. The obtained VCD signals of NdWFamide were in good agreement with the VCD signals that were calculated based on the optimized aggregates of NdWFamide, which formed a helical-like backbone conformation. The evaluation of the VCD results revealed the conformation of NdWFamide in the crystalline state and succeeded in distinguishing its stereoisomers. Therefore, this study demonstrates VCD as a useful method for the structural analysis of naturally occurring d-amino acid-containing peptides.
Collapse
Affiliation(s)
- Hiroki Yamagishi
- Graduate School of Engineering Science, Yokohama National University, Yokohama, Japan
| | - Hisako Sato
- Graduate School of Science and Engineering, Ehime University, Matsuyama, Japan
| | - Izuru Kawamura
- Graduate School of Engineering Science, Yokohama National University, Yokohama, Japan
| |
Collapse
|
5
|
Scarel M, Marchesan S. Diketopiperazine Gels: New Horizons from the Self-Assembly of Cyclic Dipeptides. Molecules 2021; 26:3376. [PMID: 34204905 PMCID: PMC8199760 DOI: 10.3390/molecules26113376] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 06/01/2021] [Accepted: 06/01/2021] [Indexed: 02/07/2023] Open
Abstract
Cyclodipeptides (CDPs) or 2,5-diketopiperazines (DKPs) can exert a variety of biological activities and display pronounced resistance against enzymatic hydrolysis as well as a propensity towards self-assembly into gels, relative to the linear-dipeptide counterparts. They have attracted great interest in a variety of fields spanning from functional materials to drug discovery. This concise review will analyze the latest advancements in their synthesis, self-assembly into gels, and their more innovative applications.
Collapse
Affiliation(s)
- Marco Scarel
- Chemical and Pharmaceutical Sciences Department, University of Trieste, Via Giorgieri 1, 34127 Trieste, Italy;
| | - Silvia Marchesan
- Chemical and Pharmaceutical Sciences Department, University of Trieste, Via Giorgieri 1, 34127 Trieste, Italy;
- National Interuniversity Consortium of Materials Science and Technology (INSTM), University of Trieste, 34127 Trieste, Italy
| |
Collapse
|
6
|
Zhang L, Lin S, Li Y, Li B, Yang Y. Ala–Ala dipeptides with a semi-perfluoroalkyl chain: chirality driven molecular packing difference and self-assembly driven chiral transfer. NEW J CHEM 2021. [DOI: 10.1039/d0nj05676f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The chirality of amino acids triggered the chiral molecular stacking of dipeptides and, eventually, transferred to the semi-perfluoroalkyl chain.
Collapse
Affiliation(s)
- Lianglin Zhang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou 215123
| | - Shuwei Lin
- Key Lab of Advanced Optical Manufacturing Technologies of Jiangsu Province & Key Lab of Modern Optical Technologies of Education Ministry of China
- School of Optoelectronics Science and Engineering
- Soochow University
- Suzhou 215123
- China
| | - Yi Li
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou 215123
| | - Baozong Li
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou 215123
| | - Yonggang Yang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou 215123
| |
Collapse
|
7
|
Ohtomi T, Higashi SL, Mori D, Shibata A, Kitamura Y, Ikeda M. Effect of side chain phenyl group on the self‐assembled morphology of dipeptide hydrazides. Pept Sci (Hoboken) 2020. [DOI: 10.1002/pep2.24200] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Taku Ohtomi
- Department of Life Science and Chemistry, Graduate School of Natural Science and Technology Gifu University Gifu Japan
| | - Sayuri L. Higashi
- United Graduate School of Drug Discovery and Medical Information Sciences Gifu University Gifu Japan
| | - Daisuke Mori
- Department of Life Science and Chemistry, Graduate School of Natural Science and Technology Gifu University Gifu Japan
| | - Aya Shibata
- Department of Life Science and Chemistry, Graduate School of Natural Science and Technology Gifu University Gifu Japan
| | - Yoshiaki Kitamura
- Department of Life Science and Chemistry, Graduate School of Natural Science and Technology Gifu University Gifu Japan
| | - Masato Ikeda
- Department of Life Science and Chemistry, Graduate School of Natural Science and Technology Gifu University Gifu Japan
- United Graduate School of Drug Discovery and Medical Information Sciences Gifu University Gifu Japan
- Center for Highly Advanced Integration of Nano and Life Sciences Gifu University (G‐CHAIN) Gifu Japan
- Institute of Nano‐Life‐Systems, Institute of Innovation for Future Society Nagoya University Nagoya Japan
- Institute for Glyco‐core Research (iGCORE) Gifu University Nagoya Japan
| |
Collapse
|