1
|
Tkachenko DV, Larionov RA, Ziganshina SA, Khayarov KR, Klimovitskii AE, Babaeva OB, Gorbatchuk VV, Ziganshin MA. Cyclization of alanyl-valine dipeptides in the solid state. The effects of molecular radiator and heat capacity. Phys Chem Chem Phys 2024; 26:27338-27347. [PMID: 39440569 DOI: 10.1039/d4cp02795g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Heating of linear dipeptides above a critical temperature initiates their cyclization even in the solid state. This method of obtaining cyclic dipeptides meets the requirements of "green chemistry", provides a high yield of the main product and releases only water as a by-product of the reaction, and does not require solvents. However, to date, the cyclization of only a small number of dipeptides in the solid state has been studied, and some correlations of the process were discovered. The influence of the structure of dipeptide molecules and their crystal packing on the kinetics of solid-state cyclization is still not fully understood. In this work, the cyclization of L-alanyl-L-valine in the solid state upon heating was studied. Using non-isothermal kinetic approaches, the kinetic parameters of this reaction and the optimal kinetic model describing this process were determined. The effect of the features of the crystal packing of dipeptides and their heat capacity on the temperature of the cyclization in the solid state was analyzed. This study expands our knowledge about solid-state reactions involving dipeptides and the ability to control such reactions.
Collapse
Affiliation(s)
- Daria V Tkachenko
- Alexander Butlerov Institute of Chemistry, Kazan (Volga Region) Federal University, 18 ul. Kremlyovskaya, 420008 Kazan, Russian Federation.
| | - Radik A Larionov
- Alexander Butlerov Institute of Chemistry, Kazan (Volga Region) Federal University, 18 ul. Kremlyovskaya, 420008 Kazan, Russian Federation.
| | - Sufia A Ziganshina
- Alexander Butlerov Institute of Chemistry, Kazan (Volga Region) Federal University, 18 ul. Kremlyovskaya, 420008 Kazan, Russian Federation.
| | - Khasan R Khayarov
- Alexander Butlerov Institute of Chemistry, Kazan (Volga Region) Federal University, 18 ul. Kremlyovskaya, 420008 Kazan, Russian Federation.
| | - Aleksandr E Klimovitskii
- Alexander Butlerov Institute of Chemistry, Kazan (Volga Region) Federal University, 18 ul. Kremlyovskaya, 420008 Kazan, Russian Federation.
| | - Olga B Babaeva
- A.E. Arbuzov Institute of Organic and Physical Chemistry, RAS, Kazan, 420088, Russia
| | - Valery V Gorbatchuk
- Alexander Butlerov Institute of Chemistry, Kazan (Volga Region) Federal University, 18 ul. Kremlyovskaya, 420008 Kazan, Russian Federation.
| | - Marat A Ziganshin
- Alexander Butlerov Institute of Chemistry, Kazan (Volga Region) Federal University, 18 ul. Kremlyovskaya, 420008 Kazan, Russian Federation.
- Academy of Sciences of the Republic of Tatarstan, Kazan, 420111, Russia
| |
Collapse
|
2
|
Bowles J, Jähnigen S, Agostini F, Vuilleumier R, Zehnacker A, Calvo F, Clavaguéra C. Vibrational Circular Dichroism Spectroscopy with a Classical Polarizable Force Field: Alanine in the Gas and Condensed Phases. Chemphyschem 2024; 25:e202300982. [PMID: 38318765 DOI: 10.1002/cphc.202300982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 02/05/2024] [Accepted: 02/06/2024] [Indexed: 02/07/2024]
Abstract
Polarizable force fields are an essential component for the chemically accurate modeling of complex molecular systems with a significant degree of fluxionality, beyond harmonic or perturbative approximations. In this contribution we examine the performance of such an approach for the vibrational spectroscopy of the alanine amino acid, in the gas and condensed phases, from the Fourier transform of appropriate time correlation functions generated along molecular dynamics (MD) trajectories. While the infrared (IR) spectrum only requires the electric dipole moment, the vibrational circular dichroism (VCD) spectrum further requires knowledge of the magnetic dipole moment, for which we provide relevant expressions to be used with polarizable force fields. The AMOEBA force field was employed here to model alanine in the neutral and zwitterionic isolated forms, solvated by water or nitrogen, and as a crystal. Within this framework, comparison of the electric and magnetic dipole moments to those obtained with nuclear velocity perturbation theory based on density-functional theory for the same MD trajectories are found to agree well with one another. The statistical convergence of the IR and VCD spectra is examined and found to be more demanding in the latter case. Comparisons with experimental frequencies are also provided for the condensed phases.
Collapse
Affiliation(s)
- Jessica Bowles
- Université Paris-Saclay, CNRS, Institut de Chimie Physique UMR8000, 91405, Orsay, France
| | - Sascha Jähnigen
- PASTEUR Laboratory, Département de Chimie, Ecole Normale Supérieure, PSL University, Sorbonne Université, CNRS, 75005, Paris, France
| | - Federica Agostini
- Université Paris-Saclay, CNRS, Institut de Chimie Physique UMR8000, 91405, Orsay, France
| | - Rodolphe Vuilleumier
- PASTEUR Laboratory, Département de Chimie, Ecole Normale Supérieure, PSL University, Sorbonne Université, CNRS, 75005, Paris, France
| | - Anne Zehnacker
- Université Paris-Saclay, CNRS, Institut des Sciences Moléculaires d'Orsay UMR8214, 91405, Orsay, France
| | - Florent Calvo
- Université Grenoble Alpes, CNRS, LIPhy, 38000, Grenoble, France
| | - Carine Clavaguéra
- Université Paris-Saclay, CNRS, Institut de Chimie Physique UMR8000, 91405, Orsay, France
| |
Collapse
|
3
|
Jähnigen S. Vibrational Circular Dichroism Spectroscopy of Chiral Molecular Crystals: Insights from Theory. Angew Chem Int Ed Engl 2023; 62:e202303595. [PMID: 37071543 DOI: 10.1002/anie.202303595] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/18/2023] [Accepted: 04/18/2023] [Indexed: 04/19/2023]
Abstract
Chirality is a curious phenomenon that appears in various forms. While the concept of molecular (RS-)chirality is ubiquitous in chemistry, there are also more intricate forms of structural chirality. One of them is the enantiomorphism of crystals, especially molecular crystals, that describes the lack of mirror symmetry in the unit cell. Its relation to molecular chirality is not obvious, but still an open question, which can be addressed with chiroptical tools. Vibrational circular dichroism (VCD) denotes chiral infrared (IR) spectroscopy that is susceptible to both, the molecular as well as the intermolecular space by means of vibrational transitions. When carried out in the solid state, VCD delivers a very rich set of non-local contributions that are determined by crystal packing and collective motion. Since its discovery in the 1970s, VCD has become the method of choice for the determination of absolute configurations, but its applicability reaches beyond towards the study of different crystal forms and polymorphism. This brief review summarises the theoretical concepts of crystal chirality and how computations of solid-state VCD can shed light into the intimate connection of chiral structure and vibrational optical activity.
Collapse
Affiliation(s)
- Sascha Jähnigen
- PASTEUR, Département de Chimie, Ecole Normale Supérieure, PSL University, Sorbonne Université, CNRS, 75005, Paris, France
| |
Collapse
|
4
|
Jähnigen S, Le Barbu-Debus K, Guillot R, Vuilleumier R, Zehnacker A. How Crystal Symmetry Dictates Non-Local Vibrational Circular Dichroism in the Solid State. Angew Chem Int Ed Engl 2023; 62:e202215599. [PMID: 36441537 PMCID: PMC10107176 DOI: 10.1002/anie.202215599] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 11/28/2022] [Accepted: 11/28/2022] [Indexed: 11/29/2022]
Abstract
Solid-State Vibrational Circular Dichroism (VCD) can be used to determine the absolute structure of chiral crystals, but its interpretation remains a challenge in modern spectroscopy. In this work, we investigate the effect of a twofold screw axis on the solid-state VCD spectrum in a combined experimental and theoretical analysis of P21 crystals of (S)-(+)-1-indanol. Even though the space group is achiral, a single proper symmetry operation has an important impact on the VCD spectrum, which reflects the supramolecular chirality of the crystal. Distinguishing between contributions originating from molecular chirality and from chiral crystal packing, we find that while IR absorption hardly depends on the symmetry of the space group, the situation is different for VCD, where completely new non-local patterns emerge. Understanding the two underlying mechanisms, namely gauge transport and direct coupling, will help to use VCD to distinguish polymorphic forms.
Collapse
Affiliation(s)
- Sascha Jähnigen
- PASTEUR, Département de Chimie, Ecole Normale Supérieure, CNRS, PSL University, Sorbonne Université, 75005, Paris, France
| | - Katia Le Barbu-Debus
- Institut des Sciences Moléculaires d'Orsay (ISMO), CNRS, Université Paris-Saclay, 91405, Orsay, France
| | - Régis Guillot
- Institut de Chimie Moléculaire et des Matériaux d'Orsay (ICMMO), CNRS, Université Paris-Saclay, 91405, Orsay, France
| | - Rodolphe Vuilleumier
- PASTEUR, Département de Chimie, Ecole Normale Supérieure, CNRS, PSL University, Sorbonne Université, 75005, Paris, France
| | - Anne Zehnacker
- Institut des Sciences Moléculaires d'Orsay (ISMO), CNRS, Université Paris-Saclay, 91405, Orsay, France
| |
Collapse
|
5
|
Le Barbu-Debus K, Pérez-Mellor A, Lepère V, Zehnacker A. How change in chirality prevents β-amyloid type interaction in a protonated cyclic dipeptide dimer. Phys Chem Chem Phys 2022; 24:19783-19791. [PMID: 35969161 DOI: 10.1039/d2cp03110h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The protonated dimers of the diketopiperazine dipeptide cyclo (LPhe-LHis) and cyclo (LPhe-DHis) are studied by laser spectroscopy combined with mass spectrometry to shed light on the influence of stereochemistry on the clustering propensity of cyclic dipeptides. The marked spectroscopic differences experimentally observed in the hydride stretch region are well accounted for by the results of DFT calculations. Both diastereomeric protonated dimers involve a strong ionic hydrogen bond from the protonated imidazole ring of one monomer to the neutral imidazole nitrogen of the other. While this strong interaction is accompanied by a single NH⋯O hydrogen bond between the amide functions of the two moieties for the protonated dimer of cyclo (LPhe-DHis), that of cyclo (LPhe-LHis) involves two NH⋯O interactions, forming the motif of an antiparallel β sheet. Therefore, a change in chirality of the residue prevents the formation of the β sheet pattern observed in the amyloid type aggregation. These results emphasize the peculiar role of the histidine residue in peptide structure and interaction.
Collapse
Affiliation(s)
- Katia Le Barbu-Debus
- Institut des Sciences Moléculaires d'Orsay (ISMO), CNRS, Université Paris-Saclay, F-91405 Orsay, France.
| | - Ariel Pérez-Mellor
- Institut des Sciences Moléculaires d'Orsay (ISMO), CNRS, Université Paris-Saclay, F-91405 Orsay, France.
| | - Valéria Lepère
- Institut des Sciences Moléculaires d'Orsay (ISMO), CNRS, Université Paris-Saclay, F-91405 Orsay, France.
| | - Anne Zehnacker
- Institut des Sciences Moléculaires d'Orsay (ISMO), CNRS, Université Paris-Saclay, F-91405 Orsay, France.
| |
Collapse
|
6
|
Dupont J, Guillot R, Lepère V, Zehnacker A. Jet-cooled laser spectroscopy and solid-state vibrational circular dichroism of the cyclo-(Tyr-Phe) diketopiperazine dipeptide. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133059] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
7
|
Abstract
Protonated cyclic dipeptides undergo collision-induced dissociation, and this reaction mechanism strongly depends on the symmetry and the nature of the residues. We review the main dissociation mechanism for a series of cyclic dipeptides, obtained through chemical dynamics simulations. The systems range from the symmetrical cyclo-(glycyl-glycyl), with two possible symmetrical protonation sites located on the peptide ring, to cyclo-(tyrosyl-prolyl), where the symmetry of protonation sites on the peptide ring is broken by the dissimilar nature of the different residues. Finally, cyclo-(phenylalanyl-histidyl) shows a completely asymmetric situation, with the proton located on one of the dipeptide side chains, which explains the peculiar fragmentation mechanism induced by shuttling the proton, whose efficiency is strongly dependent on the relative chirality of the residues.
Collapse
|
8
|
Jähnigen S, Zehnacker A, Vuilleumier R. Computation of Solid-State Vibrational Circular Dichroism in the Periodic Gauge. J Phys Chem Lett 2021; 12:7213-7220. [PMID: 34310135 DOI: 10.1021/acs.jpclett.1c01682] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
We introduce a new theoretical formalism to compute solid-state vibrational circular dichroism (VCD) spectra from molecular dynamics simulations. Having solved the origin-dependence problem of the periodic magnetic gauge, we present IR and VCD spectra of (1S,2S)-trans-1,2-cyclohexanediol obtained from first-principles molecular dynamics calculations and nuclear velocity perturbation theory, along with the experimental results. Because the structure model imposes periodic boundary conditions, the common origin of the rotational strength has hitherto been ill-defined and was approximated by means of averaging multiple origins. The new formalism reconnects the periodic model with the finite physical system and restores gauge freedom. It nevertheless fully accounts for nonlocal spatial couplings from the gauge transport term. We show that even for small simulation cells the rich nature of solid-state VCD spectra found in experiments can be reproduced to a very satisfactory level.
Collapse
Affiliation(s)
- Sascha Jähnigen
- Institut des Sciences Moléculaires d'Orsay (ISMO), CNRS, Université Paris-Saclay, 91405 Orsay, France
- PASTEUR Laboratory, Département de Chimie, Ecole Normale Supérieure, PSL University, Sorbonne Université, CNRS,, 75005 Paris, France
| | - Anne Zehnacker
- Institut des Sciences Moléculaires d'Orsay (ISMO), CNRS, Université Paris-Saclay, 91405 Orsay, France
| | - Rodolphe Vuilleumier
- PASTEUR Laboratory, Département de Chimie, Ecole Normale Supérieure, PSL University, Sorbonne Université, CNRS,, 75005 Paris, France
| |
Collapse
|
9
|
Yamagishi H, Sato H, Kawamura I. Vibrational circular dichroism of D-amino acid-containing peptide NdWFamide in the crystal form. Chirality 2021; 33:652-659. [PMID: 34313360 DOI: 10.1002/chir.23343] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 07/02/2021] [Accepted: 07/08/2021] [Indexed: 01/31/2023]
Abstract
Microcrystals of l-Asn-d-Trp-l-Phe-NH2 (NdWFamide), a tripeptide derived from Aplysia kurodai that exhibits invertebrate cardiac activity, were evaluated by vibrational circular dichroism (VCD). The chirality of the tryptophan residue at the second position in NdWFamide was associated with the conformation and biological characteristics. The VCD spectrum of NdWFamide was a mirror image of its enantiomer; however, it was significantly different from that of its diastereomer, NWFamide, which is its precursor. The obtained VCD signals of NdWFamide were in good agreement with the VCD signals that were calculated based on the optimized aggregates of NdWFamide, which formed a helical-like backbone conformation. The evaluation of the VCD results revealed the conformation of NdWFamide in the crystalline state and succeeded in distinguishing its stereoisomers. Therefore, this study demonstrates VCD as a useful method for the structural analysis of naturally occurring d-amino acid-containing peptides.
Collapse
Affiliation(s)
- Hiroki Yamagishi
- Graduate School of Engineering Science, Yokohama National University, Yokohama, Japan
| | - Hisako Sato
- Graduate School of Science and Engineering, Ehime University, Matsuyama, Japan
| | - Izuru Kawamura
- Graduate School of Engineering Science, Yokohama National University, Yokohama, Japan
| |
Collapse
|
10
|
Scarel M, Marchesan S. Diketopiperazine Gels: New Horizons from the Self-Assembly of Cyclic Dipeptides. Molecules 2021; 26:3376. [PMID: 34204905 PMCID: PMC8199760 DOI: 10.3390/molecules26113376] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 06/01/2021] [Accepted: 06/01/2021] [Indexed: 02/07/2023] Open
Abstract
Cyclodipeptides (CDPs) or 2,5-diketopiperazines (DKPs) can exert a variety of biological activities and display pronounced resistance against enzymatic hydrolysis as well as a propensity towards self-assembly into gels, relative to the linear-dipeptide counterparts. They have attracted great interest in a variety of fields spanning from functional materials to drug discovery. This concise review will analyze the latest advancements in their synthesis, self-assembly into gels, and their more innovative applications.
Collapse
Affiliation(s)
- Marco Scarel
- Chemical and Pharmaceutical Sciences Department, University of Trieste, Via Giorgieri 1, 34127 Trieste, Italy;
| | - Silvia Marchesan
- Chemical and Pharmaceutical Sciences Department, University of Trieste, Via Giorgieri 1, 34127 Trieste, Italy;
- National Interuniversity Consortium of Materials Science and Technology (INSTM), University of Trieste, 34127 Trieste, Italy
| |
Collapse
|
11
|
Le Barbu-Debus K, Bowles J, Jähnigen S, Clavaguéra C, Calvo F, Vuilleumier R, Zehnacker A. Assessing cluster models of solvation for the description of vibrational circular dichroism spectra: synergy between static and dynamic approaches. Phys Chem Chem Phys 2020; 22:26047-26068. [DOI: 10.1039/d0cp03869e] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Solvation effects are essential for defining the shape of vibrational circular dichroism (VCD) spectra.
Collapse
Affiliation(s)
- Katia Le Barbu-Debus
- Institut des Sciences Moléculaires d’Orsay (ISMO)
- CNRS
- Université Paris-Saclay
- F-91405 Orsay
- France
| | - Jessica Bowles
- Université Paris-Saclay
- CNRS
- Institut de Chimie Physique
- UMR8000
- 91405 Orsay
| | - Sascha Jähnigen
- PASTEUR
- Département de Chimie
- Ecole Normale Supérieure
- PSL University
- Sorbonne Université
| | - Carine Clavaguéra
- Université Paris-Saclay
- CNRS
- Institut de Chimie Physique
- UMR8000
- 91405 Orsay
| | - Florent Calvo
- Université Grenoble Alpes
- CNRS
- LiPhy
- F-38000 Grenoble
- France
| | - Rodolphe Vuilleumier
- PASTEUR
- Département de Chimie
- Ecole Normale Supérieure
- PSL University
- Sorbonne Université
| | - Anne Zehnacker
- Institut des Sciences Moléculaires d’Orsay (ISMO)
- CNRS
- Université Paris-Saclay
- F-91405 Orsay
- France
| |
Collapse
|