1
|
Sparling C, Ruget A, Ireland L, Kotsina N, Ghafur O, Leach J, Townsend D. The importance of molecular axis alignment and symmetry-breaking in photoelectron elliptical dichroism. J Chem Phys 2023; 159:214301. [PMID: 38038198 DOI: 10.1063/5.0180361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 11/06/2023] [Indexed: 12/02/2023] Open
Abstract
Photoelectron angular distributions (PADs) produced from the photoionization of chiral molecules using elliptically polarized light exhibit a forward/backward asymmetry with respect to the optical propagation direction. By recording these distributions using the velocity-map imaging (VMI) technique, the resulting photoelectron elliptical dichroism (PEELD) has previously been demonstrated as a promising spectroscopic tool for studying chiral molecules in the gas phase. The use of elliptically polarized laser pulses, however, produces PADs (and consequently, PEELD distributions) that do not exhibit cylindrical symmetry about the propagation axis. This leads to significant limitations and challenges when employing conventional VMI acquisition and data processing strategies. Using novel photoelectron image analysis methods based around Hankel transform reconstruction tomography and machine learning, however, we have quantified-for the first time-significant symmetry-breaking contributions to PEELD signals that are of a comparable magnitude to the symmetric terms in the multiphoton ionization of (1R,4R)-(+)- and (1S,4S)-(-)-camphor. This contradicts any assumptions that symmetry-breaking can be ignored when reconstructing VMI data. Furthermore, these same symmetry-breaking terms are expected to appear in any experiment where circular and linear laser fields are used together. This ionization scheme is particularly relevant for investigating dynamics in chiral molecules, but it is not limited to them. Developing a full understanding of these terms and the role they play in the photoionization of chiral molecules is of clear importance if the potential of PEELD and related effects for future practical applications is to be fully realized.
Collapse
Affiliation(s)
- Chris Sparling
- Institute of Photonics & Quantum Sciences, Heriot-Watt University, Edinburgh EH14 4AS, United Kingdom
| | - Alice Ruget
- Institute of Photonics & Quantum Sciences, Heriot-Watt University, Edinburgh EH14 4AS, United Kingdom
| | - Lewis Ireland
- Institute of Photonics & Quantum Sciences, Heriot-Watt University, Edinburgh EH14 4AS, United Kingdom
| | - Nikoleta Kotsina
- Institute of Photonics & Quantum Sciences, Heriot-Watt University, Edinburgh EH14 4AS, United Kingdom
| | - Omair Ghafur
- Institute of Photonics & Quantum Sciences, Heriot-Watt University, Edinburgh EH14 4AS, United Kingdom
| | - Jonathan Leach
- Institute of Photonics & Quantum Sciences, Heriot-Watt University, Edinburgh EH14 4AS, United Kingdom
| | - Dave Townsend
- Institute of Photonics & Quantum Sciences, Heriot-Watt University, Edinburgh EH14 4AS, United Kingdom
- Institute of Chemical Sciences, Heriot-Watt University, Edinburgh EH14 4AS, United Kingdom
| |
Collapse
|
2
|
Sparling C, Crane SW, Ireland L, Anderson R, Ghafur O, Greenwood JB, Townsend D. Velocity-map imaging of photoelectron circular dichroism in non-volatile molecules using a laser-based desorption source. Phys Chem Chem Phys 2023; 25:6009-6015. [PMID: 36752555 DOI: 10.1039/d2cp05880d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
We present an initial demonstration of a velocity-map imaging (VMI) experiment using a back-irradiation laser-based desorption source directly integrated into the electrode assembly. This has the potential to greatly expand the utility of the popular VMI approach by permitting its use with high density plumes of non-volatile molecular samples. Photoelectron circular dichroism measurements on the phenylalanine molecule using 400 nm multiphoton ionization are used to illustrate this novel method, revealing forward-backward emission asymmetries on the order of 7%.
Collapse
Affiliation(s)
- Chris Sparling
- Institute of Photonics & Quantum Sciences, Heriot-Watt University, Edinburgh, EH14 4AS, UK.
| | - Stuart W Crane
- Institute of Photonics & Quantum Sciences, Heriot-Watt University, Edinburgh, EH14 4AS, UK.
| | - Lewis Ireland
- Institute of Photonics & Quantum Sciences, Heriot-Watt University, Edinburgh, EH14 4AS, UK.
| | - Ross Anderson
- Institute of Photonics & Quantum Sciences, Heriot-Watt University, Edinburgh, EH14 4AS, UK.
| | - Omair Ghafur
- Institute of Photonics & Quantum Sciences, Heriot-Watt University, Edinburgh, EH14 4AS, UK.
| | - Jason B Greenwood
- School of Mathematics and Physics, Queen's University Belfast, Belfast, BT7 1NN, UK
| | - Dave Townsend
- Institute of Photonics & Quantum Sciences, Heriot-Watt University, Edinburgh, EH14 4AS, UK. .,Institute of Chemical Sciences, Heriot-Watt University, Edinburgh, EH14 4AS, UK
| |
Collapse
|
3
|
Beauvarlet S, Bloch E, Rajak D, Descamps D, Fabre B, Petit S, Pons B, Mairesse Y, Blanchet V. Photoelectron elliptical dichroism spectroscopy of resonance-enhanced multiphoton ionization via the 3s, 3p and 3d Rydberg series in fenchone. Phys Chem Chem Phys 2022; 24:6415-6427. [PMID: 35113091 DOI: 10.1039/d1cp05618b] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The resonance-enhanced multiphoton ionization of chiral molecules by elliptically polarized laser pulses produces photoelectron angular distributions that are forward/backward asymmetric with respect to the light propagation axis. We investigate this photoelectron elliptical dichroism in the (2 + 1)-photon ionization of fenchone molecules, using wavelength tunable femtosecond UV pulses. We show that the photoelectron elliptical asymmetry is extremely sensitive to the intermediate resonant states involved in the ionization process, and enables electronic couplings to be revealed that do not show up so clearly when using circularly polarized light.
Collapse
Affiliation(s)
- Sandra Beauvarlet
- Université de Bordeaux - CNRS - CEA, CELIA, UMR 5107, F33405 Talence, France.
| | - Etienne Bloch
- Université de Bordeaux - CNRS - CEA, CELIA, UMR 5107, F33405 Talence, France.
| | - Debobrata Rajak
- Université de Bordeaux - CNRS - CEA, CELIA, UMR 5107, F33405 Talence, France.
| | - Dominique Descamps
- Université de Bordeaux - CNRS - CEA, CELIA, UMR 5107, F33405 Talence, France.
| | - Baptiste Fabre
- Université de Bordeaux - CNRS - CEA, CELIA, UMR 5107, F33405 Talence, France.
| | - Stéphane Petit
- Université de Bordeaux - CNRS - CEA, CELIA, UMR 5107, F33405 Talence, France.
| | - Bernard Pons
- Université de Bordeaux - CNRS - CEA, CELIA, UMR 5107, F33405 Talence, France.
| | - Yann Mairesse
- Université de Bordeaux - CNRS - CEA, CELIA, UMR 5107, F33405 Talence, France.
| | - Valérie Blanchet
- Université de Bordeaux - CNRS - CEA, CELIA, UMR 5107, F33405 Talence, France.
| |
Collapse
|
4
|
Koumarianou G, Wang I, Satterthwaite L, Patterson D. Assignment-free chirality detection in unknown samples via microwave three-wave mixing. Commun Chem 2022; 5:31. [PMID: 36697786 PMCID: PMC9814651 DOI: 10.1038/s42004-022-00641-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 02/03/2022] [Indexed: 01/28/2023] Open
Abstract
Straightforward identification of chiral molecules in multi-component mixtures of unknown composition is extremely challenging. Current spectrometric and chromatographic methods cannot unambiguously identify components while the state of the art spectroscopic methods are limited by the difficult and time-consuming task of spectral assignment. Here, we introduce a highly sensitive generalized version of microwave three-wave mixing that uses broad-spectrum fields to detect chiral molecules in enantiomeric excess without any prior chemical knowledge of the sample. This method does not require spectral assignment as a necessary step to extract information out of a spectrum. We demonstrate our method by recording three-wave mixing spectra of multi-component samples that provide direct evidence of enantiomeric excess. Our method opens up new capabilities in ultrasensitive phase-coherent spectroscopic detection that can be applied for chiral detection in real-life mixtures, raw products of chemical reactions and difficult to assign novel exotic species.
Collapse
Affiliation(s)
- Greta Koumarianou
- Physics Department, University of California, Santa Barbara, Santa Barbara, CA, USA.
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, CA, USA.
| | - Irene Wang
- Physics Department, University of California, Santa Barbara, Santa Barbara, CA, USA
| | - Lincoln Satterthwaite
- Physics Department, University of California, Santa Barbara, Santa Barbara, CA, USA
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, CA, USA
| | - David Patterson
- Physics Department, University of California, Santa Barbara, Santa Barbara, CA, USA
| |
Collapse
|
5
|
Dowek D, Decleva P. Trends in angle-resolved molecular photoelectron spectroscopy. Phys Chem Chem Phys 2022; 24:24614-24654. [DOI: 10.1039/d2cp02725a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
In this perspective article, main trends of angle-resolved molecular photoelectron spectroscopy in the laboratory up to the molecular frame, in different regimes of light-matter interactions, are highlighted with emphasis on foundations and most recent applications.
Collapse
Affiliation(s)
- Danielle Dowek
- Université Paris-Saclay, CNRS, Institut des Sciences Moléculaires d’Orsay, 91405 Orsay, France
| | - Piero Decleva
- CNR IOM and Dipartimento DSCF, Università di Trieste, Trieste, Italy
| |
Collapse
|