1
|
Greenwood NS, Cerny NP, Deziel AP, Ellman JA. Synthesis of N-Acylsulfenamides from (Hetero)Aryl Iodides and Boronic Acids by One-Pot Sulfur-Arylation and Dealkylation. Angew Chem Int Ed Engl 2024; 63:e202315701. [PMID: 38015869 PMCID: PMC10813656 DOI: 10.1002/anie.202315701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 11/27/2023] [Accepted: 11/28/2023] [Indexed: 11/30/2023]
Abstract
A general one-pot approach to diverse N-acylsulfenamides from a common S-phenethylsulfenamide starting material is reported. This approach was demonstrated by C-S bond formation utilizing commercially abundant (hetero)aryl iodides and boronic acids to provide sulfilimine intermediates that undergo thermal elimination of styrene. In contrast, all prior approaches to N-acylsulfenamides rely on thiol inputs to introduce sulfenamide S-substituents. A broad scope of reaction inputs was demonstrated including for approved drugs and drug precursors with dense display of functionality. Several different types of sulfur functionalization were performed on a sulfenamide derived from a complex precursor of the blockbuster anticoagulant drug apixaban, highlighting the utility of this approach for the introduction of high oxidation state sulfur groups in complex bioactive compounds. Mechanistic studies established that the key styrene elimination step proceeds by a concerted elimination that does not require reagents or catalysts, and therefore, this one-pot approach should be applicable to the synthesis of N-acylsulfenamides utilizing diverse electrophiles and reaction conditions for C-S bond formation.
Collapse
Affiliation(s)
- Nathaniel S Greenwood
- Department of Chemistry, Yale University, 225 Prospect St., New Haven, CT 06520, USA
| | - Nicholas P Cerny
- Department of Chemistry, Yale University, 225 Prospect St., New Haven, CT 06520, USA
| | - Anthony P Deziel
- Department of Chemistry, Yale University, 225 Prospect St., New Haven, CT 06520, USA
| | - Jonathan A Ellman
- Department of Chemistry, Yale University, 225 Prospect St., New Haven, CT 06520, USA
| |
Collapse
|
2
|
Gao L, Wang YQ, Zhang YQ, Fu YH, Liu YY, Zhang QW. Nickel-Catalyzed Enantioselective Synthesis of Dienyl Sulfoxide. Angew Chem Int Ed Engl 2023:e202317626. [PMID: 38085222 DOI: 10.1002/anie.202317626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Indexed: 12/29/2023]
Abstract
Sulfoxides are widely used in the pharmaceutical industry and as ligands in asymmetric catalysis. However, the efficient asymmetric synthesis of this structural motif remains limited. In this study, we disclosed a Ni-catalyzed enantioconvergent reaction that utilizes both racemic allenyl carbonates and β-sulfinyl esters. Our method employs cheap and more sustainable Ni(II) as a precatalyst and successfully overcomes the challenging poisoning effect and instability of sulfenate generated in situ. This enables the synthesis of a series of dienyl sulfoxides with enantioselectivity of up to 98 % ee. The product exhibits tremendous potential in various applications, including diastereoselective Diels-Alder reactions, coordination with transition metals, and incorporation into medicinal compounds, among others. Using a combination of experimental and computational methods, we have uncovered an interesting associated outersphere mechanism that contrasts with conventional mechanisms commonly observed in asymmetric transition metal catalysis.
Collapse
Affiliation(s)
- Li Gao
- Key Laboratory of Precision and Intelligent Chemistry, Department of Chemistry, University of Science and Technology of China, Hefei, 230026, Anhui, China
| | - Yin-Qi Wang
- Key Laboratory of Precision and Intelligent Chemistry, Department of Chemistry, University of Science and Technology of China, Hefei, 230026, Anhui, China
| | - Ya-Qian Zhang
- Key Laboratory of Precision and Intelligent Chemistry, Department of Chemistry, University of Science and Technology of China, Hefei, 230026, Anhui, China
| | - Yi-Han Fu
- Key Laboratory of Precision and Intelligent Chemistry, Department of Chemistry, University of Science and Technology of China, Hefei, 230026, Anhui, China
| | - Yi-Yu Liu
- Key Laboratory of Precision and Intelligent Chemistry, Department of Chemistry, University of Science and Technology of China, Hefei, 230026, Anhui, China
| | - Qing-Wei Zhang
- Key Laboratory of Precision and Intelligent Chemistry, Department of Chemistry, University of Science and Technology of China, Hefei, 230026, Anhui, China
| |
Collapse
|
3
|
Li Y, Wang Y, Fang F, Zhang Y, Li C, Yu T, Chen Q, Wang J, Liu H. Constructing N-Acyl/ N-Sulfonyl Aza-Sulfur Derivatives from Amides/Sulfonamides and Thiophthalimides via Oxidant Regulation. Org Lett 2023; 25:6018-6023. [PMID: 37540077 DOI: 10.1021/acs.orglett.3c02166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/05/2023]
Abstract
Here, we have constructed five distinct types of N-acyl or N-sulfonyl aza-sulfur scaffolds using readily available (sulfon)amides and thiophthalimides with precise regulation of oxidants. Our novel methods feature one-pot mild reaction conditions and simple operation, thereby making them highly convenient for the late-stage diversification of various amide drugs, bioactive molecules, and peptides.
Collapse
Affiliation(s)
- Yazhou Li
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China
| | - Yongkun Wang
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China
| | - Feifei Fang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China
- Lingang Laboratory, Shanghai 200031, China
| | - Yu Zhang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China
- Lingang Laboratory, Shanghai 200031, China
| | - Chunpu Li
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China
| | - Tao Yu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China
| | - Qiangqiang Chen
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China
| | - Jiang Wang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China
- Lingang Laboratory, Shanghai 200031, China
| | - Hong Liu
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China
| |
Collapse
|
4
|
Liu JT, Brandes DS, Greenwood NS, Ellman JA. Synthesis of N-Acylsulfenamides from Amides and N-Thiosuccinimides. SYNTHESIS-STUTTGART 2023; 55:2353-2360. [PMID: 37457378 PMCID: PMC10348737 DOI: 10.1055/s-0041-1738430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Herein is reported a robust and general method for the preparation of N-acylsulfenamides, important functionalities that have recently been utilized as central inputs for the asymmetric synthesis of high oxidation state sulfur compounds. This straightforward transformation proceeds by reaction of primary amides, carbamates, sulfonamides, sulfinamides, and ureas with stable N-thiosuccinimides or N-thiophthalimides, which in turn are prepared in a single step from commercial thiols. The use of stable N-thiosuccinimide and N-thiophthalimide reactants is desirable because it obviates the use of highly reactive sulfenyl chlorides.
Collapse
Affiliation(s)
- Jessica T Liu
- Department of Chemistry, Yale University, New Haven, CT 06520, USA
| | - Daniel S Brandes
- Department of Chemistry, Yale University, New Haven, CT 06520, USA
| | | | | |
Collapse
|