1
|
Funato T, Matsuo M, Kato T. Chirality-Induced Phonon-Spin Conversion at an Interface. PHYSICAL REVIEW LETTERS 2024; 132:236201. [PMID: 38905683 DOI: 10.1103/physrevlett.132.236201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 12/26/2023] [Accepted: 04/04/2024] [Indexed: 06/23/2024]
Abstract
We consider spin injection driven by nonequilibrium chiral phonons from a chiral insulator into an adjacent metal. Phonon-spin conversion arises from the coupling of the electron spin with the microrotation associated with chiral phonons. We derive a microscopic formula for the spin injection rate at a metal-insulator interface. Our results clearly illustrate the microscopic origin of spin current generation by chiral phonons and may lead to a breakthrough in the development of spintronic devices without heavy elements.
Collapse
Affiliation(s)
- T Funato
- Center for Spintronics Research Network, Keio University, Yokohama 223-8522, Japan
- Kavli Institute for Theoretical Sciences, University of Chinese Academy of Sciences, Beijing 100190, China
| | - M Matsuo
- Kavli Institute for Theoretical Sciences, University of Chinese Academy of Sciences, Beijing 100190, China
- CAS Center for Excellence in Topological Quantum Computation, University of Chinese Academy of Sciences, Beijing 100190, China
- Advanced Science Research Center, Japan Atomic Energy Agency, Tokai 319-1195, Japan
- RIKEN Center for Emergent Matter Science (CEMS), Wako, Saitama 351-0198, Japan
| | - T Kato
- Institute for Solid State Physics, University of Tokyo, Kashiwa 277-8581, Japan
| |
Collapse
|
2
|
Er E, Chow TH, Liz-Marzán LM, Kotov NA. Circular Polarization-Resolved Raman Optical Activity: A Perspective on Chiral Spectroscopies of Vibrational States. ACS NANO 2024; 18:12589-12597. [PMID: 38709673 PMCID: PMC11112978 DOI: 10.1021/acsnano.3c13228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 03/20/2024] [Accepted: 04/16/2024] [Indexed: 05/08/2024]
Abstract
Circular polarization-resolved Raman scattering methods include Raman optical activity (ROA) and its derivative─surface-enhanced Raman optical activity (SEROA). These spectroscopic modalities are rapidly developing due to their high information content, stand-off capabilities, and rapid development of Raman-active chiral nanostructures. These methods enable a direct readout of the vibrational energy levels of chiral molecules, crystals, and nanostructured materials, making it possible to study complex interactions and the dynamic interfaces between them. They were shown to be particularly valuable for nano- and biotechnological fields encompassing complex particles with nanoscale chirality that combine strong scattering and intense polarization rotation. This perspective dives into recent advancements in ROA and SEROA, their distinction from surface-enhanced Raman scattering, and the potential of these information-rich label-free spectroscopies for the detection of chiral biomolecules.
Collapse
Affiliation(s)
- Engin Er
- Department
of Chemical Engineering, University of Michigan, Ann Arbor 48109-2102, Michigan, United States
- NSF
Center for Complex Particle Systems (COMPASS), Ann Arbor 48109, Michigan, United States
- Biotechnology
Institute, Ankara University, Ankara 06135, Turkey
| | - Tsz Him Chow
- CIC
biomaGUNE, Basque Research and Technology Alliance (BRTA), Donostia-San Sebastián 20014, Spain
| | - Luis M. Liz-Marzán
- CIC
biomaGUNE, Basque Research and Technology Alliance (BRTA), Donostia-San Sebastián 20014, Spain
- Ikerbasque,
Basque Foundation for Science, Bilbao 43009, Spain
- Centro de
Investigación Biomédica en Red, Bioingeniería,
Biomateriales y Nanomedicina (CIBER-BBN), Donostia-San Sebastián 20014, Spain
- Cinbio, University of Vigo, Vigo 36310, Spain
| | - Nicholas A. Kotov
- Department
of Chemical Engineering, University of Michigan, Ann Arbor 48109-2102, Michigan, United States
- NSF
Center for Complex Particle Systems (COMPASS), Ann Arbor 48109, Michigan, United States
- Department
of Materials Science, University of Michigan, Ann Arbor 48109-2102, Michigan, United States
- Biointerfaces
Institute, University of Michigan, Ann Arbor 48109-2102, Michigan, United States
| |
Collapse
|
3
|
Inda A, Oiwa R, Hayami S, Yamamoto HM, Kusunose H. Quantification of chirality based on electric toroidal monopole. J Chem Phys 2024; 160:184117. [PMID: 38738609 DOI: 10.1063/5.0204254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 04/22/2024] [Indexed: 05/14/2024] Open
Abstract
Chirality ubiquitously appears in nature; however, its quantification remains obscure owing to the lack of microscopic description at the quantum-mechanical level. We propose a way of evaluating chirality in terms of the electric toroidal monopole, a practical entity of time-reversal even pseudoscalar (parity-odd) objects reflecting relevant electronic wave functions. For this purpose, we analyze a twisted methane molecule at the quantum-mechanical level, showing that the electric toroidal monopoles become a quantitative indicator for chirality. In the twisted methane, we clarify that the handedness of chirality corresponds to the sign of the expectation value of the electric toroidal monopole and that the most important ingredient is the modulation of the spin-dependent imaginary hopping between the hydrogen atoms, while the relativistic spin-orbit coupling within the carbon atom is irrelevant for chirality.
Collapse
Affiliation(s)
- A Inda
- Graduate School of Science, Hokkaido University, Sapporo 060-0810, Japan
| | - R Oiwa
- RIKEN Center for Emergent Matter Science (CEMS), Wako 351-0198, Japan
| | - S Hayami
- Graduate School of Science, Hokkaido University, Sapporo 060-0810, Japan
| | - H M Yamamoto
- Institute for Molecular Science, Myodaiji, Okazaki 444-8585, Japan
- QuaRC, Institute for Molecular Science, Myodaiji, Okazaki 444-8585, Japan
| | - H Kusunose
- QuaRC, Institute for Molecular Science, Myodaiji, Okazaki 444-8585, Japan
- Department of Physics, Meiji University, Kanagawa 214-8571, Japan
| |
Collapse
|
4
|
Lange G, Pottecher JDF, Robey C, Monserrat B, Peng B. Negative Refraction of Weyl Phonons at Twin Quartz Interfaces. ACS MATERIALS LETTERS 2024; 6:847-855. [PMID: 38455509 PMCID: PMC10915867 DOI: 10.1021/acsmaterialslett.3c00846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 12/12/2023] [Accepted: 12/13/2023] [Indexed: 03/09/2024]
Abstract
In Nature, α-quartz crystals frequently form contact twins, which are two adjacent crystals with the same chemical structure but different crystallographic orientation, sharing a common lattice plane. As α-quartz crystallizes in a chiral space group, such twinning can occur between enantiomorphs with the same handedness or with opposite handedness. Here, we use first-principles methods to investigate the effect of twinning and chirality on the bulk and surface phonon spectra, as well as on the topological properties of phonons in α-quartz. We demonstrate that, even though the dispersion appears identical for all twins along all high-symmetry lines and at all high-symmetry points in the Brillouin zone, the dispersions can be distinct at generic momenta for some twin structures. Furthermore, when the twinning occurs between different enantiomorphs, the charges of all Weyl nodal points flip, which leads to mirror symmetric isofrequency contours of the surface arcs on certain surfaces. We show that this allows negative refraction to occur at interfaces between certain twins of α-quartz.
Collapse
Affiliation(s)
- Gunnar
F. Lange
- Theory
of Condensed Matter Group, Cavendish Laboratory, University of Cambridge, J. J. Thomson Avenue, Cambridge CB3 0HE, United Kingdom
| | - Juan D. F. Pottecher
- St.
Catharine’s College, University of
Cambridge, Trumpington Street, Cambridge CB2 1RL, United Kingdom
| | - Cameron Robey
- St.
John’s College, University of Cambridge, St John’s Street, Cambridge CB2 1TP, United Kingdom
| | - Bartomeu Monserrat
- Theory
of Condensed Matter Group, Cavendish Laboratory, University of Cambridge, J. J. Thomson Avenue, Cambridge CB3 0HE, United Kingdom
- Department
of Materials Science and Metallurgy, University
of Cambridge, 27 Charles Babbage Road, Cambridge CB3 0FS, United Kingdom
| | - Bo Peng
- Theory
of Condensed Matter Group, Cavendish Laboratory, University of Cambridge, J. J. Thomson Avenue, Cambridge CB3 0HE, United Kingdom
| |
Collapse
|
5
|
Ohe K, Shishido H, Kato M, Utsumi S, Matsuura H, Togawa Y. Chirality-Induced Selectivity of Phonon Angular Momenta in Chiral Quartz Crystals. PHYSICAL REVIEW LETTERS 2024; 132:056302. [PMID: 38364155 DOI: 10.1103/physrevlett.132.056302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 10/18/2023] [Accepted: 12/07/2023] [Indexed: 02/18/2024]
Abstract
A generation, propagation, and transfer of phonon angular momenta are examined on thermal transport in chiral insulative and diamagnetic crystals of α-quartz. We found that thermally driven phonons carry chirality-dependent angular momenta in the quartz crystals and they could be extracted from the quartz as a spin signal. Namely, chirality-induced selectivity of phonon angular momenta is realized in the chiral quartz. We argue that chiral phonons available in chiral materials could be a key element in triggering or enhancing chirality-induced spin selectivity with robust spin polarization and long-range spin transport found in various chiral materials.
Collapse
Affiliation(s)
- Kazuki Ohe
- Department of Physics and Electronics, Osaka Prefecture University, 1-1 Gakuencho, Sakai, Osaka 599-8531, Japan
| | - Hiroaki Shishido
- Department of Physics and Electronics, Osaka Prefecture University, 1-1 Gakuencho, Sakai, Osaka 599-8531, Japan
- Department of Physics and Electronics, Osaka Metroplitan University, 1-1 Gakuencho, Sakai, Osaka 599-8531, Japan
| | - Masaki Kato
- Department of Physics, The University of Tokyo, Bunkyo, Tokyo 113-0033, Japan
| | - Shoyo Utsumi
- Department of Physics and Electronics, Osaka Metroplitan University, 1-1 Gakuencho, Sakai, Osaka 599-8531, Japan
| | - Hiroyasu Matsuura
- Department of Physics, The University of Tokyo, Bunkyo, Tokyo 113-0033, Japan
| | - Yoshihiko Togawa
- Department of Physics and Electronics, Osaka Prefecture University, 1-1 Gakuencho, Sakai, Osaka 599-8531, Japan
- Department of Physics and Electronics, Osaka Metroplitan University, 1-1 Gakuencho, Sakai, Osaka 599-8531, Japan
- Quantum Research Center for Chirality, Institute for Molecular Science, Okazaki 444-8585, Japan
| |
Collapse
|
6
|
Hernandez FG, Baydin A, Chaudhary S, Tay F, Katayama I, Takeda J, Nojiri H, Okazaki AK, Rappl PH, Abramof E, Rodriguez-Vega M, Fiete GA, Kono J. Observation of interplay between phonon chirality and electronic band topology. SCIENCE ADVANCES 2023; 9:eadj4074. [PMID: 38100589 PMCID: PMC10848715 DOI: 10.1126/sciadv.adj4074] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 11/15/2023] [Indexed: 12/17/2023]
Abstract
The recently demonstrated chiral modes of lattice motion carry angular momentum and therefore directly couple to magnetic fields. Notably, their magnetic moments are predicted to be strongly influenced by electronic contributions. Here, we have studied the magnetic response of transverse optical phonons in a set of Pb1-xSnxTe films, which is a topological crystalline insulator for x > 0.32 and has a ferroelectric transition at an x-dependent critical temperature. Polarization-dependent terahertz magnetospectroscopy measurements revealed Zeeman splittings and diamagnetic shifts, demonstrating a large phonon magnetic moment. Films in the topological phase exhibited phonon magnetic moment values that were larger than those in the topologically trivial samples by two orders of magnitude. Furthermore, the sign of the effective phonon g-factor was opposite in the two phases, a signature of the topological transition according to our model. These results strongly indicate the existence of interplay between the magnetic properties of chiral phonons and the topology of the electronic band structure.
Collapse
Affiliation(s)
| | - Andrey Baydin
- Department of Electrical and Computer Engineering, Rice University, Houston, TX 77005, USA
- Smalley-Curl Institute, Rice University, Houston, TX 77005, USA
| | - Swati Chaudhary
- Department of Physics, The University of Texas at Austin, Austin, TX 78712, USA
- Department of Physics, Northeastern University, Boston, MA 02115, USA
- Department of Physics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Fuyang Tay
- Department of Electrical and Computer Engineering, Rice University, Houston, TX 77005, USA
- Applied Physics Graduate Program, Smalley-Curl Institute, Rice University, Houston, TX 77005, USA
| | - Ikufumi Katayama
- Department of Physics, Graduate School of Engineering Science, Yokohama National University, Yokohama 240-8501, Japan
| | - Jun Takeda
- Department of Physics, Graduate School of Engineering Science, Yokohama National University, Yokohama 240-8501, Japan
| | - Hiroyuki Nojiri
- Institute for Materials Research, Tohoku University, Sendai 980-8577, Japan
| | - Anderson K. Okazaki
- Instituto Nacional de Pesquisas Espaciais, São José dos Campos, SP 12201-970, Brazil
| | - Paulo H. O. Rappl
- Instituto Nacional de Pesquisas Espaciais, São José dos Campos, SP 12201-970, Brazil
| | - Eduardo Abramof
- Instituto Nacional de Pesquisas Espaciais, São José dos Campos, SP 12201-970, Brazil
| | - Martin Rodriguez-Vega
- Department of Physics, The University of Texas at Austin, Austin, TX 78712, USA
- Department of Physics, Northeastern University, Boston, MA 02115, USA
| | - Gregory A. Fiete
- Department of Physics, Northeastern University, Boston, MA 02115, USA
- Department of Physics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Junichiro Kono
- Department of Electrical and Computer Engineering, Rice University, Houston, TX 77005, USA
- Smalley-Curl Institute, Rice University, Houston, TX 77005, USA
- Department of Physics and Astronomy, Rice University, Houston, TX 77005, USA
- Department of Materials Science and NanoEngineering, Rice University, Houston, TX 77005, USA
| |
Collapse
|
7
|
Gao L, Prokhorenko S, Nahas Y, Bellaiche L. Dynamical Multiferroicity and Magnetic Topological Structures Induced by the Orbital Angular Momentum of Light in a Nonmagnetic Material. PHYSICAL REVIEW LETTERS 2023; 131:196801. [PMID: 38000422 DOI: 10.1103/physrevlett.131.196801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 09/19/2023] [Indexed: 11/26/2023]
Abstract
Recent studies have revealed that chiral phonons resonantly excited by ultrafast laser pulses carry magnetic moments and can enhance the magnetization of materials. In this work, using first-principles-based simulations, we present a real-space scenario where circular motions of electric dipoles in ultrathin two-dimensional ferroelectric and nonmagnetic films are driven by orbital angular momentum of light via strong coupling between electric dipoles and optical field. Rotations of these dipoles follow the evolving pattern of the optical field and create strong on-site orbital magnetic moments of ions. By characterizing topology of orbital magnetic moments in each 2D layer, we identify the vortex type of topological texture-magnetic merons with a one-half topological charge and robust stability. Our study thus provides alternative approaches for generating magnetic fields and topological textures from light-matter interaction and dynamical multiferroicity in nonmagnetic materials.
Collapse
Affiliation(s)
- Lingyuan Gao
- Physics Department and Institute for Nanoscience and Engineering, University of Arkansas, Fayetteville, Arkansas 72701, USA
| | - Sergei Prokhorenko
- Physics Department and Institute for Nanoscience and Engineering, University of Arkansas, Fayetteville, Arkansas 72701, USA
| | - Yousra Nahas
- Physics Department and Institute for Nanoscience and Engineering, University of Arkansas, Fayetteville, Arkansas 72701, USA
| | - Laurent Bellaiche
- Physics Department and Institute for Nanoscience and Engineering, University of Arkansas, Fayetteville, Arkansas 72701, USA
| |
Collapse
|
8
|
Zhang T, Huang Z, Pan Z, Du L, Zhang G, Murakami S. Weyl Phonons in Chiral Crystals. NANO LETTERS 2023; 23:7561-7567. [PMID: 37530581 DOI: 10.1021/acs.nanolett.3c02132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/03/2023]
Abstract
Chirality is an indispensable concept that pervades fundamental science and nature, manifesting itself in diverse forms, e.g., quasiparticles, and crystal structures. Of particular interest are Weyl phonons carrying specific Chern numbers and chiral phonons doing circular motions. Up to now, they have been studied independently and the interpretations of chirality seem to be different in these two concepts, impeding our understanding. Here, we demonstrate that they are entangled in chiral crystals. Employing a typical chiral crystal of elementary tellurium (Te) as a case study, we expound on the intrinsic relationship between Chern number of Weyl phonons and pseudoangular momentum (PAM, lph) of chiral phonons. We propose Raman scattering as a new technique to demonstrate the existence of Weyl phonons in Te, by detecting the chirality-induced energy splitting between the two constituent chiral phonon branches for Weyl phonons. Moreover, we also observe the obstructed phonon surface states for the first time.
Collapse
Affiliation(s)
- Tiantian Zhang
- CAS Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Zhiheng Huang
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zitian Pan
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Luojun Du
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Guangyu Zhang
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- Songshan Lake Materials Laboratory, Dongguan 523808, China
| | - Shuichi Murakami
- Department of Physics, Tokyo Institute of Technology, Okayama, Meguro-ku, Tokyo 152-8551, Japan
| |
Collapse
|