1
|
Loewe D, Dieken H, Grein TA, Weidner T, Salzig D, Czermak P. Opportunities to debottleneck the downstream processing of the oncolytic measles virus. Crit Rev Biotechnol 2020; 40:247-264. [PMID: 31918573 DOI: 10.1080/07388551.2019.1709794] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Oncolytic viruses (including measles virus) offer an alternative approach to reduce the high mortality rate of late-stage cancer. Several measles virus strains infect and lyse cancer cells efficiently, but the broad application of this therapeutic concept is hindered by the large number of infectious particles required (108-1012 TCID50 per dose). The manufacturing process must, therefore, achieve high titers of oncolytic measles virus (OMV) during upstream production and ensure that the virus product is not damaged during purification by applying appropriate downstream processing (DSP) unit operations. DSP is currently a production bottleneck because there are no specific platforms for OMV. Infectious OMV must be recovered as intact, enveloped particles, and host cell proteins and DNA must be reduced to acceptable levels to meet regulatory guidelines that were developed for virus-based vaccines and gene therapy vectors. Handling such high viral titers and process volumes is technologically challenging and expensive. This review considers the state of the art in OMV purification and looks at promising DSP technologies. We discuss here the purification of other enveloped viruses where such technologies could also be applied to OMV. The development of DSP technologies tailored for enveloped viruses is necessary to produce sufficient titers for virotherapy, which could offer hope to millions of patients suffering from incurable cancer.
Collapse
Affiliation(s)
- Daniel Loewe
- Institute of Bioprocess Engineering and Pharmaceutical Technology, University of Applied Sciences Mittelhessen, Giessen, Germany.,Faculty of Biology and Chemistry, University of Giessen, Giessen, Germany
| | - Hauke Dieken
- Institute of Bioprocess Engineering and Pharmaceutical Technology, University of Applied Sciences Mittelhessen, Giessen, Germany
| | - Tanja A Grein
- Institute of Bioprocess Engineering and Pharmaceutical Technology, University of Applied Sciences Mittelhessen, Giessen, Germany
| | - Tobias Weidner
- Institute of Bioprocess Engineering and Pharmaceutical Technology, University of Applied Sciences Mittelhessen, Giessen, Germany
| | - Denise Salzig
- Institute of Bioprocess Engineering and Pharmaceutical Technology, University of Applied Sciences Mittelhessen, Giessen, Germany
| | - Peter Czermak
- Institute of Bioprocess Engineering and Pharmaceutical Technology, University of Applied Sciences Mittelhessen, Giessen, Germany.,Faculty of Biology and Chemistry, University of Giessen, Giessen, Germany.,Project Group Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Giessen, Germany
| |
Collapse
|
2
|
Sterile filtration of oncolytic viruses: An analysis of effects of membrane morphology on fouling and product recovery. J Memb Sci 2018. [DOI: 10.1016/j.memsci.2017.11.022] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
3
|
Junter GA, Lebrun L. Cellulose-based virus-retentive filters: a review. RE/VIEWS IN ENVIRONMENTAL SCIENCE AND BIO/TECHNOLOGY 2017; 16:455-489. [PMID: 32214924 PMCID: PMC7088658 DOI: 10.1007/s11157-017-9434-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/20/2023]
Abstract
Viral filtration is a critical step in the purification of biologics and in the monitoring of microbiological water quality. Viral filters are also essential protection elements against airborne viral particles. The present review first focuses on cellulose-based filter media currently used for size-exclusion and/or adsorptive filtration of viruses from biopharmaceutical and environmental water samples. Data from spiking studies quantifying the viral filtration performance of cellulosic filters are detailed, i.e., first, the virus reduction capacity of regenerated cellulose hollow fiber filters in the manufacturing process of blood products and, second, the efficiency of virus recovery/concentration from water samples by the viradel (virus adsorption-elution) method using charge modified, electropositive cellulosic filters or conventional electronegative cellulose ester microfilters. Viral analysis of field water samples by the viradel technique is also surveyed. This review then describes cellulose-based filter media used in individual protection equipment against airborne viral pathogens, presenting innovative filtration media with virucidal properties. Some pros and cons of cellulosic viral filters and perspectives for cellulose-based materials in viral filtration are underlined in the review.
Collapse
Affiliation(s)
- Guy-Alain Junter
- Normandie Univ, UNIROUEN Normandie, INSA Rouen, CNRS, PBS, 76000 Rouen, France
| | - Laurent Lebrun
- Normandie Univ, UNIROUEN Normandie, INSA Rouen, CNRS, PBS, 76000 Rouen, France
| |
Collapse
|
4
|
Ding J, Lawrence RM, Jones PV, Hogue BG, Hayes MA. Concentration of Sindbis virus with optimized gradient insulator-based dielectrophoresis. Analyst 2017; 141:1997-2008. [PMID: 26878279 DOI: 10.1039/c5an02430g] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Biotechnology, separation science, and clinical research are impacted by microfluidic devices. Separation and manipulation of bioparticles such as DNA, protein and viruses are performed on these platforms. Microfluidic systems provide many attractive features, including small sample size, rapid detection, high sensitivity and short processing time. Dielectrophoresis (DEP) and electrophoresis are especially well suited to microscale bioparticle control and have been demonstrated in many formats. In this work, an optimized gradient insulator-based DEP device was utilized for concentration of Sindbis virus, an animal virus with a diameter of 68 nm. Within only a few seconds, the concentration of Sindbis virus can be increased by two to six times in the channel under easily accessible voltages as low as about 70 V. Compared with traditional diagnostic methods used in virology, DEP-based microfluidics can enable faster isolation, detection and concentration of viruses in a single step within a short time.
Collapse
Affiliation(s)
- Jie Ding
- School of Molecular Sciences, Arizona State University, Tempe, Arizona, USA.
| | - Robert M Lawrence
- The Center for Infectious Diseases and Vaccinology, The Biodesign Institute, Arizona State University, Tempe, Arizona, USA and Center for Applied Structural Design, The Biodesign Institute, Arizona State University, Tempe, Arizona, USA
| | - Paul V Jones
- School of Molecular Sciences, Arizona State University, Tempe, Arizona, USA.
| | - Brenda G Hogue
- School of Life Sciences, Arizona State University, Tempe, Arizona, USA and The Center for Infectious Diseases and Vaccinology, The Biodesign Institute, Arizona State University, Tempe, Arizona, USA and Center for Applied Structural Design, The Biodesign Institute, Arizona State University, Tempe, Arizona, USA
| | - Mark A Hayes
- School of Molecular Sciences, Arizona State University, Tempe, Arizona, USA.
| |
Collapse
|
5
|
Gustafsson S, Mihranyan A. Strategies for Tailoring the Pore-Size Distribution of Virus Retention Filter Papers. ACS APPLIED MATERIALS & INTERFACES 2016; 8:13759-67. [PMID: 27144657 DOI: 10.1021/acsami.6b03093] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
The goal of this work is to demonstrate how the pore-size distribution of the nanocellulose-based virus-retentive filter can be tailored. The filter paper was produced using cellulose nanofibers derived from Cladophora sp. green algae using the hot-press drying at varying drying temperatures. The produced filters were characterized using scanning electron microscopy, atomic force microscopy, and N2 gas sorption analysis. Further, hydraulic permeability and retention efficiency toward surrogate 20 nm model particles (fluorescent carboxylate-modified polystyrene spheres) were assessed. It was shown that by controlling the rate of water evaporation during hot-press drying the pore-size distribution can be precisely tailored in the region between 10 and 25 nm. The mechanism of pore formation and critical parameters are discussed in detail. The results are highly valuable for development of advanced separation media, especially for virus-retentive size-exclusion filtration.
Collapse
Affiliation(s)
- Simon Gustafsson
- Division of Nanotechnology and Functional Materials, Department of Engineering Sciences, Uppsala University , Box 534 SE-75121, Uppsala, Sweden
| | - Albert Mihranyan
- Division of Nanotechnology and Functional Materials, Department of Engineering Sciences, Uppsala University , Box 534 SE-75121, Uppsala, Sweden
| |
Collapse
|
6
|
Biosensors for waterborne viruses: Detection and removal. Biochimie 2015; 115:144-54. [DOI: 10.1016/j.biochi.2015.05.010] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Accepted: 05/14/2015] [Indexed: 01/20/2023]
|
7
|
Metreveli G, Wågberg L, Emmoth E, Belák S, Strømme M, Mihranyan A. A size-exclusion nanocellulose filter paper for virus removal. Adv Healthc Mater 2014; 3:1546-50, 1524. [PMID: 24687994 DOI: 10.1002/adhm.201300641] [Citation(s) in RCA: 153] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Revised: 01/17/2014] [Indexed: 11/05/2022]
Abstract
This is the first time a 100% natural, unmodified nanofibrous polymer-based membrane is demonstrated capable of removing viruses solely based on the size-exclusion principle, with a log10 reduction value (LRV) ≥ 6.3 as limited by the assay lower detection limit and the feed virus titre, thereby matching the performance of industrial synthetic polymer virus removal filters.
Collapse
Affiliation(s)
- Giorgi Metreveli
- Department of Biomedical Sciences and Veterinary Public Health Swedish University of Agricultural Sciences Box 7036 750 07 Uppsala Sweden
| | - Linus Wågberg
- Nanotechnology and Functional Materials Department of Engineering Sciences Box 534, Uppsala University 75121 Uppsala Sweden
| | - Eva Emmoth
- Unit of Virology Immunobiology and Parasitology The National Veterinary Institute (SVA) 751 89 Uppsala Sweden
| | - Sándor Belák
- Unit of Virology Immunobiology and Parasitology The National Veterinary Institute (SVA) 751 89 Uppsala Sweden
| | - Maria Strømme
- Nanotechnology and Functional Materials Department of Engineering Sciences Box 534, Uppsala University 75121 Uppsala Sweden
| | - Albert Mihranyan
- Division of Materials Science Luleå University of Technology 971 87 Luleå Sweden
- Nanotechnology and Functional Materials Department of Engineering Sciences Box 534, Uppsala University 75121 Uppsala Sweden
| |
Collapse
|
8
|
Gencoglu MF, Pearson E, Heldt CL. Porcine parvovirus flocculation and removal in the presence of osmolytes. J Biotechnol 2014; 186:83-90. [DOI: 10.1016/j.jbiotec.2014.06.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Revised: 05/16/2014] [Accepted: 06/06/2014] [Indexed: 10/25/2022]
|