1
|
Energy-Model and Life Cycle-Model for Grinding Processes of Limestone Products. ENERGIES 2022. [DOI: 10.3390/en15103816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Fine and ultrafine grinding of limestone are frequently used in the pharmaceutical, chemical, construction, food, and cosmetic industries, however, research investigations have not yet been published on the combination of energy and life cycle modeling. Therefore, the first aim of this research work was the examination of main grinding parameters of the limestone particles to determine an empiric energy-model. Dry and wet grinding experiments have been carried out with a Bond mill and a laboratory stirred ball mill. During the grinding processes, the grinding time and the filling ratio have been adjusted. The second goal of this research assessed the resources, emissions and environmental impacts of wet laboratory grinding with the help of life cycle assessment (LCA). The life cycle assessment was completed by applying the GaBi 8.0 (version: 10.5) software and the CML method. As a result of research, the determination of an empiric energy-model allowed to develop an estimated particle size distribution and a relationship between grinding fineness and specific grinding energy. The particle size distribution of ground materials can be exactly calculated by an empirical Rosin–Rammler function which represented well the function parameters on the mill characters. In accordance with LCA results, the environmental impacts for the mass of a useful product for different levels of specific energy with the building of approximation functions were determined. This research work sets up a new complex model with the help of mathematical equations between life cycle assessment and specific energy results, and so improves the energy and environmental efficiency of grinding systems. This research work facilitates the industry to make predictions for a production-scale plant using an LCA of pilot grinding processes.
Collapse
|
2
|
Peppersack C, Kwade A, Breitung-Faes S. Selective particle size analysis in binary submicron particle mixtures using density dependent differential sedimentation. ADV POWDER TECHNOL 2021. [DOI: 10.1016/j.apt.2021.09.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
3
|
Wewers M, Czyz S, Finke JH, John E, Van Eerdenbrugh B, Juhnke M, Bunjes H, Kwade A. Influence of Formulation Parameters on Redispersibility of Naproxen Nanoparticles from Granules Produced in a Fluidized Bed Process. Pharmaceutics 2020; 12:pharmaceutics12040363. [PMID: 32316108 PMCID: PMC7238015 DOI: 10.3390/pharmaceutics12040363] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 04/09/2020] [Accepted: 04/14/2020] [Indexed: 12/30/2022] Open
Abstract
The particle size reduction of active pharmaceutical ingredients is an efficient method to overcome challenges associated with a poor aqueous solubility. With respect to stability and patient's convenience, the corresponding nanosuspensions are often further processed to solid dosage forms. In this regard, the influence of several formulation parameters (i.e., type of carrier material, type and amount of additional polymeric drying excipient in the nanosuspension) on the redispersibility of naproxen nanoparticle-loaded granules produced in a fluidized bed process was investigated. The dissolution rate of the carrier material (i.e., sucrose, mannitol, or lactose) was identified as a relevant material property, with higher dissolution rates (sucrose > mannitol > lactose) resulting in better redispersibility of the products. Additionally, the redispersibility of the product granules was observed to improve with increasing amounts of polymeric drying excipient in the nanosuspension. The redispersibility was observed to qualitatively correlate with the degree of nanoparticle embedding on the surface of the corresponding granules. This embedding was assumed to be either caused by a partial dissolution and subsequent resolidification of the carrier surface dependent on the dissolution rate of the carrier material or by resolidification of the dissolved polymeric drying excipient upon drying. As the correlation between the redispersibility and the morphology of the corresponding granules was observed for all investigated formulation parameters, it may be assumed that the redispersibility of the nanoparticles is determined by their distance in the dried state.
Collapse
Affiliation(s)
- Martin Wewers
- Institute for Particle Technology, Technische Universität Braunschweig, Volkmaroder Str. 5, 38104 Braunschweig, Germany
- Center of Pharmaceutical Engineering (PVZ), Technische Universität Braunschweig, 38106 Braunschweig, Germany
| | - Stefan Czyz
- Center of Pharmaceutical Engineering (PVZ), Technische Universität Braunschweig, 38106 Braunschweig, Germany
- Institute of Pharmaceutical Technology, Technische Universität Braunschweig, Mendelssohnstr. 1, 38106 Braunschweig, Germany
| | - Jan Henrik Finke
- Institute for Particle Technology, Technische Universität Braunschweig, Volkmaroder Str. 5, 38104 Braunschweig, Germany
- Center of Pharmaceutical Engineering (PVZ), Technische Universität Braunschweig, 38106 Braunschweig, Germany
| | - Edgar John
- Novartis Pharma AG, 4002 Basel, Switzerland
| | | | | | - Heike Bunjes
- Center of Pharmaceutical Engineering (PVZ), Technische Universität Braunschweig, 38106 Braunschweig, Germany
- Institute of Pharmaceutical Technology, Technische Universität Braunschweig, Mendelssohnstr. 1, 38106 Braunschweig, Germany
| | - Arno Kwade
- Institute for Particle Technology, Technische Universität Braunschweig, Volkmaroder Str. 5, 38104 Braunschweig, Germany
- Center of Pharmaceutical Engineering (PVZ), Technische Universität Braunschweig, 38106 Braunschweig, Germany
| |
Collapse
|