1
|
Ross-Jones J, Teumer T, Wunsch S, Petri L, Nirschl H, Krause MJ, Methner FJ, Rädle M. Feasibility Study for a Chemical Process Particle Size Characterization System for Explosive Environments Using Low Laser Power. MICROMACHINES 2020; 11:mi11100911. [PMID: 33008003 PMCID: PMC7600193 DOI: 10.3390/mi11100911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 09/25/2020] [Accepted: 09/28/2020] [Indexed: 11/16/2022]
Abstract
The industrial particle sensor market lacks simple, easy to use, low cost yet robust, safe and fast response solutions. Towards development of such a sensor, for in-line use in micro channels under continuous flow conditions, this work introduces static light scattering (SLS) determination of particle diameter using a laser with an emission power of less than 5 µW together with sensitive detectors with detection times of 1 ms. The measurements for the feasibility studies are made in an angular range between 20° and 160° in 2° increments. We focus on the range between 300 and 1000 nm, for applications in the production of paints, colors, pigments and crystallites. Due to the fast response time, reaction characteristics in microchannel designs for precipitation and crystallization processes can be studied. A novel method for particle diameter characterization is developed using the positions of maxima and minima and slope distribution. The novel algorithm to classify particle diameter is especially developed to be independent of dispersed phase concentration or concentration fluctuations like product flares or signal instability. Measurement signals are post processed and particle diameters are validated against Mie light scattering simulations. The design of a low cost instrument for industrial use is proposed.
Collapse
Affiliation(s)
- Jesse Ross-Jones
- Center for Mass Spectrometry and Optical Spectroscopy, Mannheim University of Applied Sciences, Paul-Wittsack-Straße 10, 68163 Mannheim, Germany; (S.W.); (L.P.); (M.R.)
- Lattice Boltzmann Research Group, Institute for Mechanical Process Engineering and Mechanics, Karlsruher Institut für Technologie, Straße am Forum 8, 76131 Karlsruhe, Germany; (J.R.-J.); (H.N.); (M.J.K.)
| | - Tobias Teumer
- Center for Mass Spectrometry and Optical Spectroscopy, Mannheim University of Applied Sciences, Paul-Wittsack-Straße 10, 68163 Mannheim, Germany; (S.W.); (L.P.); (M.R.)
- Chair of Brewing Science, Department of Food Technology and Food Chemistry, Technische Universität Berlin, Seestraße 13, 13353 Berlin, Germany;
- Correspondence: ; Tel.: +49-621-370086-21
| | - Susann Wunsch
- Center for Mass Spectrometry and Optical Spectroscopy, Mannheim University of Applied Sciences, Paul-Wittsack-Straße 10, 68163 Mannheim, Germany; (S.W.); (L.P.); (M.R.)
| | - Lukas Petri
- Center for Mass Spectrometry and Optical Spectroscopy, Mannheim University of Applied Sciences, Paul-Wittsack-Straße 10, 68163 Mannheim, Germany; (S.W.); (L.P.); (M.R.)
| | - Hermann Nirschl
- Lattice Boltzmann Research Group, Institute for Mechanical Process Engineering and Mechanics, Karlsruher Institut für Technologie, Straße am Forum 8, 76131 Karlsruhe, Germany; (J.R.-J.); (H.N.); (M.J.K.)
| | - Mathias J. Krause
- Lattice Boltzmann Research Group, Institute for Mechanical Process Engineering and Mechanics, Karlsruher Institut für Technologie, Straße am Forum 8, 76131 Karlsruhe, Germany; (J.R.-J.); (H.N.); (M.J.K.)
| | - Frank-Jürgen Methner
- Chair of Brewing Science, Department of Food Technology and Food Chemistry, Technische Universität Berlin, Seestraße 13, 13353 Berlin, Germany;
| | - Matthias Rädle
- Center for Mass Spectrometry and Optical Spectroscopy, Mannheim University of Applied Sciences, Paul-Wittsack-Straße 10, 68163 Mannheim, Germany; (S.W.); (L.P.); (M.R.)
| |
Collapse
|