1
|
Geitner R, Schuett T, Zechel S, Schubert US. Advancements and Challenges in the Synthesis of Oxymethylene Ethers (OMEs) as Sustainable Transportation Fuels. Chemistry 2024; 30:e202401570. [PMID: 38877302 DOI: 10.1002/chem.202401570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 06/05/2024] [Accepted: 06/13/2024] [Indexed: 06/16/2024]
Abstract
The urgent need for sustainable alternatives to fossil fuels in the transportation sector is driving research into novel energy carriers that can meet the high energy density requirements of heavy-duty vehicles without exacerbating the climate change. This concept article examines the synthesis, mechanisms, and challenges associated with oxymethylene ethers (OMEs), a promising class of synthetic fuels potentially derived from carbon dioxide and hydrogen. We highlight the importance of OMEs in the transition towards non-fossil energy sources due to their compatibility with the existing Diesel infrastructure and their cleaner combustion profile. The synthesis mechanisms, including the Schulz-Flory distribution and its implications for OME chain length specificity, and the role of various catalysts and starting materials are discussed in depth. Despite advancements in the field, significant challenges remain, such as overcoming the Schulz-Flory distribution, efficiently managing water as an undesirable byproduct, and improving the overall energy efficiency of the OME synthesis. Addressing these challenges is crucial for OMEs to become a viable alternative fuel, contributing to the reduction of greenhouse gas emissions and the transition to a sustainable energy future in the transportation sector.
Collapse
Affiliation(s)
- Robert Geitner
- Institute for Chemistry and Bioengineering, Technical University Ilmenau, Weimarer Str. 32, 98693, Ilmenau, Germany
| | - Timo Schuett
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstr. 10, 07743, Jena, Germany
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743, Jena, Germany
| | - Stefan Zechel
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstr. 10, 07743, Jena, Germany
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743, Jena, Germany
| | - Ulrich S Schubert
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstr. 10, 07743, Jena, Germany
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743, Jena, Germany
- Helmholtz Institute for Polymers in Energy Applications Jena (HIPOLE Jena), Lessingstrasse 12-14, 07743, Jena, Germany
| |
Collapse
|
2
|
Stability and Reactivity of a Polyoxymethylene Dimethyl Ether over Typical Catalysts for Diesel Emission Control. Top Catal 2022. [DOI: 10.1007/s11244-022-01725-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
AbstractPolyoxymethylene dimethyl ethers (OME) produced from methanol are considered as potential substitutes of Diesel fuel. Emissions of formaldehyde and other components have been observed, particularly under cold-start conditions in engine test-bench experiments with OME fuel. In this study, the reactivity of OME3 (CH3O(CH2O)3CH3) and its decomposition products was studied in the temperature range 80–450 °C in a model gas test bench over V2O5/WO3/TiO2 and Cu-CHA SCR catalysts, a platinum-coated V2O5/WO3/TiO2 ammonia slip catalyst (ASC) and two diesel oxidation catalysts (DOC), based on platinum and platinum-palladium. Already at 80 °C, OME3 was largely hydrolyzed to methanol and formaldehyde over all catalysts. At temperatures above 150 °C, V2O5/WO3/TiO2 oxidized methanol and formaldehyde to CO via formic acid as intermediate. The platinum ASC showed a similar behavior but oxidized the decomposition products to CO2. Whereas Cu-CHA hydrolyzed OME3 quantitatively to methanol and formaldehyde, it did not show oxidation activity in the studied temperature range. The data indicate that the release of significant amounts of OME from a catalytic converter can be virtually ruled out under cold start conditions, but also that low temperature hydrolysis produces formaldehyde and methanol emissions.
Collapse
|
3
|
Breitkreuz CF, Hevert N, Schmitz N, Burger J, Hasse H. Synthesis of Methylal and Poly(oxymethylene) Dimethyl Ethers from Dimethyl Ether and Trioxane. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c00790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Christian F. Breitkreuz
- Laboratory of Engineering Thermodynamics (LTD), Technische Universität Kaiserslautern (TUK), Erwin-Schrödinger-Str. 44, 67663 Kaiserslautern, Germany
| | - Nicole Hevert
- Laboratory of Engineering Thermodynamics (LTD), Technische Universität Kaiserslautern (TUK), Erwin-Schrödinger-Str. 44, 67663 Kaiserslautern, Germany
| | - Niklas Schmitz
- Laboratory of Engineering Thermodynamics (LTD), Technische Universität Kaiserslautern (TUK), Erwin-Schrödinger-Str. 44, 67663 Kaiserslautern, Germany
| | - Jakob Burger
- Laboratory of Chemical Process Engineering, Campus Straubing for Biotechnology and Sustainability, Technical University of Munich (TUM), Uferstr. 53, 94315 Straubing, Germany
| | - Hans Hasse
- Laboratory of Engineering Thermodynamics (LTD), Technische Universität Kaiserslautern (TUK), Erwin-Schrödinger-Str. 44, 67663 Kaiserslautern, Germany
| |
Collapse
|
4
|
Endres P, Zechel S, Winter A, Hager MD, Schubert US. Comparing Microwave and Classical Synthesis of Oxymethylene Dimethyl Ethers. MACROMOL CHEM PHYS 2022. [DOI: 10.1002/macp.202200020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Patrick Endres
- Laboratory of Organic and Macromolecular Chemistry (IOMC) Friedrich Schiller University Jena Humboldtstr. 10 07743 Jena Germany
- Jena Center for Soft Matter (JCSM) Friedrich Schiller University Jena Philosophenweg 7 07743 Jena Germany
| | - Stefan Zechel
- Laboratory of Organic and Macromolecular Chemistry (IOMC) Friedrich Schiller University Jena Humboldtstr. 10 07743 Jena Germany
- Jena Center for Soft Matter (JCSM) Friedrich Schiller University Jena Philosophenweg 7 07743 Jena Germany
| | - Andreas Winter
- Laboratory of Organic and Macromolecular Chemistry (IOMC) Friedrich Schiller University Jena Humboldtstr. 10 07743 Jena Germany
- Jena Center for Soft Matter (JCSM) Friedrich Schiller University Jena Philosophenweg 7 07743 Jena Germany
| | - Martin D. Hager
- Laboratory of Organic and Macromolecular Chemistry (IOMC) Friedrich Schiller University Jena Humboldtstr. 10 07743 Jena Germany
- Jena Center for Soft Matter (JCSM) Friedrich Schiller University Jena Philosophenweg 7 07743 Jena Germany
- Center for Energy and Environmental Chemistry Jena (CEEC Jena) Philosophenweg 7a 07743 Jena Germany
| | - Ulrich S. Schubert
- Laboratory of Organic and Macromolecular Chemistry (IOMC) Friedrich Schiller University Jena Humboldtstr. 10 07743 Jena Germany
- Jena Center for Soft Matter (JCSM) Friedrich Schiller University Jena Philosophenweg 7 07743 Jena Germany
- Center for Energy and Environmental Chemistry Jena (CEEC Jena) Philosophenweg 7a 07743 Jena Germany
| |
Collapse
|
5
|
Gao X, Zhang J, Song F, Zhang Q, Han Y, Tan Y. Selective oxidation conversion of methanol/dimethyl ether. Chem Commun (Camb) 2022; 58:4687-4699. [PMID: 35302128 DOI: 10.1039/d1cc07276e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
As important platform compounds, methanol and dimethyl ether (DME) are vital bridges between the coal chemical, petrochemical and fine chemical industries. At present, the synthesis of methanol/DME has been industrialized, and the production capacity is much larger than the market demand. Therefore, the conversion of methanol/DME into more valuable chemicals is an important and significant topic. The synthesis of high value-added oxygenated chemicals and diesel oil additives from methanol/DME by an oxidation method has attracted substantial attention due to it being green and environmentally friendly and having good atom economy. In this feature article, we have summarized the recent advances in the synthesis of formaldehyde, methyl formate, dimethoxymethane, and polyoxymethylene dimethyl ethers, from the selective oxidation of methanol/DME, and further discussed the adsorption and activation of reactant molecules, selective cleavage of C-O, C-H or O-H bonds in methanol/DME molecules and the C-O chain growth in the target products. In the end, major challenges and future prospects are proposed from the viewpoint of catalyst design and application. It is expected that this feature article will provide theoretical guidance for the activation and cleavage of C-O, C-H, or O-H bonds in other small molecules of alcohol/ether as well as low-carbon alkanes, so as to synthesize high value-added chemicals.
Collapse
Affiliation(s)
- Xiujuan Gao
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Science, Taiyuan 030001, China. .,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Junfeng Zhang
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Science, Taiyuan 030001, China.
| | - Faen Song
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Science, Taiyuan 030001, China.
| | - Qingde Zhang
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Science, Taiyuan 030001, China. .,Dalian National Laboratory for Clean Energy, CAS, Dalian 116023, China
| | - Yizhuo Han
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Science, Taiyuan 030001, China.
| | - Yisheng Tan
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Science, Taiyuan 030001, China.
| |
Collapse
|
6
|
Affiliation(s)
- Reinhard Zellner
- Universität Duisburg-Essen Institut für Physikalische Chemie Universitätsstraße 5 45141 Essen Deutschland
| |
Collapse
|
7
|
Lluna‐Galán C, Izquierdo‐Aranda L, Adam R, Cabrero‐Antonino JR. Catalytic Reductive Alcohol Etherifications with Carbonyl-Based Compounds or CO 2 and Related Transformations for the Synthesis of Ether Derivatives. CHEMSUSCHEM 2021; 14:3744-3784. [PMID: 34237201 PMCID: PMC8518999 DOI: 10.1002/cssc.202101184] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 07/07/2021] [Indexed: 05/27/2023]
Abstract
Ether derivatives have myriad applications in several areas of chemical industry and academia. Hence, the development of more effective and sustainable protocols for their production is highly desired. Among the different methodologies reported for ether synthesis, catalytic reductive alcohol etherifications with carbonyl-based moieties (aldehydes/ketones and carboxylic acid derivatives) have emerged in the last years as a potential tool. These processes constitute appealing routes for the selective production of both symmetrical and asymmetrical ethers (including O-heterocycles) with an increased molecular complexity. Likewise, ester-to-ether catalytic reductions and hydrogenative alcohol etherifications with CO2 to dialkoxymethanes and other acetals, albeit in less extent, have undergone important advances, too. In this Review, an update of the recent progresses in the area of catalytic reductive alcohol etherifications using carbonyl-based compounds and CO2 have been described with a special focus on organic synthetic applications and catalyst design. Complementarily, recent progress made in catalytic acetal/ketal-to-ether or ester-to-ether reductions and other related transformations have been also summarized.
Collapse
Affiliation(s)
- Carles Lluna‐Galán
- Instituto de Tecnología QuímicaUniversitat Politécnica de València-Consejo Superior Investigaciones Científicas (UPV-CSIC)Avda. de los Naranjos s/n46022ValenciaSpain
| | - Luis Izquierdo‐Aranda
- Instituto de Tecnología QuímicaUniversitat Politécnica de València-Consejo Superior Investigaciones Científicas (UPV-CSIC)Avda. de los Naranjos s/n46022ValenciaSpain
| | - Rosa Adam
- Instituto de Tecnología QuímicaUniversitat Politécnica de València-Consejo Superior Investigaciones Científicas (UPV-CSIC)Avda. de los Naranjos s/n46022ValenciaSpain
| | - Jose R. Cabrero‐Antonino
- Instituto de Tecnología QuímicaUniversitat Politécnica de València-Consejo Superior Investigaciones Científicas (UPV-CSIC)Avda. de los Naranjos s/n46022ValenciaSpain
| |
Collapse
|
8
|
Leopold M, Siebert M, Siegle AF, Trapp O. Reaction Network Analysis of the Ruthenium‐Catalyzed Reduction of Carbon Dioxide to Dimethoxymethane. ChemCatChem 2021. [DOI: 10.1002/cctc.202100437] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Max Leopold
- Department of Chemistry Ludwig-Maximilians-University Munich Butenandtstr. 5–13 D-81377 Munich Germany
| | - Max Siebert
- Department of Chemistry Ludwig-Maximilians-University Munich Butenandtstr. 5–13 D-81377 Munich Germany
| | - Alexander F. Siegle
- Department of Chemistry Ludwig-Maximilians-University Munich Butenandtstr. 5–13 D-81377 Munich Germany
| | - Oliver Trapp
- Department of Chemistry Ludwig-Maximilians-University Munich Butenandtstr. 5–13 D-81377 Munich Germany
| |
Collapse
|
9
|
Kley KS, Grünert A, Schmidt W, Schüth F. S‐PEEK as a Catalyst for Gas Phase OME Synthesis. ChemCatChem 2021. [DOI: 10.1002/cctc.202100191] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Klara S. Kley
- Max-Planck-Institut für Kohlenforschung Kaiser-Wilhelm-Platz 1 45470 Mülheim an der Ruhr Germany
| | - Anna Grünert
- Max-Planck-Institut für Kohlenforschung Kaiser-Wilhelm-Platz 1 45470 Mülheim an der Ruhr Germany
| | - Wolfgang Schmidt
- Max-Planck-Institut für Kohlenforschung Kaiser-Wilhelm-Platz 1 45470 Mülheim an der Ruhr Germany
| | - Ferdi Schüth
- Max-Planck-Institut für Kohlenforschung Kaiser-Wilhelm-Platz 1 45470 Mülheim an der Ruhr Germany
| |
Collapse
|
10
|
Styring P, Dowson GRM. Oxygenated Transport Fuels from Carbon Dioxide : Driving towards Net Zero. JOHNSON MATTHEY TECHNOLOGY REVIEW 2021. [DOI: 10.1595/205651321x16063027322661] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The restructuring of the economy post-COVID-19 coupled to the drive towards Net Zero carbon dioxide emissions means we must rethink the way we use transport fuels. Fossil-carbon based fuels are ubiquitous in the transport sector, however there are alternative synthetic fuels that could
be used as drop-in or replacement fuels. The main hurdles to achieving a transition to synthetic fuels are the limited availability of low-cost carbon dioxide at an appropriate purity, the availability of renewable hydrogen and, in the case of hydrocarbons, catalysts that are selective for
small and particular chain lengths. In this paper we will consider some of the alternative fuels and methods that could reduce cost, both economically and environmentally. We recommend that increased effort in the rapid development of these fuels should be a priority in order to accelerate
the possibility of achieving Net Zero without costly infrastructure changes. As ground transportation offers a more straightforward approach legislatively, we will look at oxygenated organic fuels as an alternative drop-in replacement for hydrocarbons.
Collapse
Affiliation(s)
- Peter Styring
- UK Centre for Carbon Dioxide Utilisation, Department of Chemical & Biological Engineering, Sir Robert Hadfield Building, The University of Sheffield Sheffield, S1 3JD UK
| | - George R. M. Dowson
- UK Centre for Carbon Dioxide Utilisation, Department of Chemical & Biological Engineering, Sir Robert Hadfield Building, The University of Sheffield Sheffield, S1 3JD UK
| |
Collapse
|
11
|
Huth D, Rose M. Selective catalytic synthesis of short chain oxymethylene ethers by a heteropoly acid – a reaction parameter and kinetic study. Catal Sci Technol 2021. [DOI: 10.1039/d0cy02434a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Oxymethylene ethers (OME) are considered as a low-emission additive or replacement to diesel fuel. They can by efficiently produced in a catalytic process using heteropoly acids as catalyst.
Collapse
Affiliation(s)
- Daniel Huth
- Technical University of Darmstadt
- Department of Chemistry
- Ernst-Berl-Institut für Technische und Makromolekulare Chemie
- 64287 Darmstadt
- Germany
| | - Marcus Rose
- Technical University of Darmstadt
- Department of Chemistry
- Ernst-Berl-Institut für Technische und Makromolekulare Chemie
- 64287 Darmstadt
- Germany
| |
Collapse
|