1
|
Moharramzadeh M, Ceylan Z, Atıcı Ö. Glutathione S-Transferase Activity in Wild Plants with 2,4-Dichlorophenol (2,4-DCP) Phytoremediation Potential. ANAL LETT 2022. [DOI: 10.1080/00032719.2022.2064484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Affiliation(s)
- Mohammad Moharramzadeh
- Department of Environmental Engineering, Faculty of Engineering, Atatürk University, Erzurum, Turkey
| | - Zeynep Ceylan
- Department of Environmental Engineering, Faculty of Engineering, Atatürk University, Erzurum, Turkey
| | - Ökkeş Atıcı
- Department of Biology, Science Faculty, Atatürk University, Erzurum, Turkey
| |
Collapse
|
2
|
Castellanos RM, Dezotti M, Bassin JP. COD, nitrogen and phosphorus removal from simulated sewage in an aerobic granular sludge in the absence and presence of natural and synthetic estrogens: Performance and biomass physical properties assessment. Biochem Eng J 2021. [DOI: 10.1016/j.bej.2021.108221] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
3
|
Khan SB, Lee SL. Nanomaterials significance; contaminants degradation for environmental applications. NANO EXPRESS 2021. [DOI: 10.1088/2632-959x/abf689] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Abstract
Nanotechnology provides an innovative platform that is inexpensive, reasonable, having least chances of secondary contamination, economical, and an effective method to concurrently eradicate numerous impurities from contaminated wastewater. Presently, different researches have been conducted exhibiting versatile multifunctional nanoparticles (NPs) that concurrently confiscate several impurities existing in the water. Nanotechnology helps in eliminating impurities from water through the rapid, low-cost method. Pollutants such as 2,4-dichlorophenol (death-causing contaminant as it quickly gets absorbed via the skin), or industrial dyes including methyl violet (MV) or methyl orange (MO) causing water contamination were also concisely explained. In this mini-review, nanomaterials were critically investigated, and the practicability and effectiveness of the elimination of contaminations were debated. The analysis shows that a few of these processes can be commercialized in treating diverse toxins via multifunctional nanotechnology innovations. Hence, nanotechnology shows a promising and environmental friendly method to resolve the restrictions of current and conventional contaminated water treatment. We can progress the technology, without influencing and affecting the natural earth environment conditions.
Collapse
|
4
|
Khan N, Khan MD, Sabir S, Nizami AS, Anwer AH, Rehan M, ZainKhan M. Deciphering the effects of temperature on bio-methane generation through anaerobic digestion. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:29766-29777. [PMID: 31873899 DOI: 10.1007/s11356-019-07245-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 12/02/2019] [Indexed: 06/10/2023]
Abstract
Anaerobic digestion (AD) is a sustainable wastewater treatment technology which facilitates energy, nutrient, and water recovery from organic wastes. The agricultural and industrial wastes are suitable substrates for the AD, as they contain a high level of biodegradable compounds. The aim of this study was to examine the AD of three different concentrations of phenol (100, 200, and 300 mg/L) containing wastewater with and without co-substrate (acetate) at four different temperatures (25, 35, 45, and 55 °C) to produce methane (CH4)-enriched biogas. It was observed that the chemical oxygen demand (COD) and phenol removal efficiencies of up to 76% and 72%, respectively, were achieved. The CH4 generation was found higher in anaerobic batch reactors (ABRs) using acetate as co-substrate, with the highest yield of 189.1 μL CH4 from 500 μL sample injected, obtained using 200 mg/L of phenol at 35 °C. The results revealed that the performance of ABR in terms of degradation efficiency, COD removal, and biogas generation was highest at 35 °C followed by 55, 45, and 25 °C indicating 35 °C to be the optimum temperature for AD of phenolic wastewater with maximum energy recovery. Scanning electron microscopy (SEM) revealed that the morphology of the anaerobic sludge depends greatly on the temperature at which the system is maintained which in turn affects the performance and degradation of toxic contaminants like phenol. It was observed that the anaerobic sludge maintained at 35 °C showed uniform channels leading to higher permeability through enhanced mass transfer to achieve higher degradation rates. However, the denser sludge as in the case of 55 °C showed lesser permeability leading to limited transfer and thus reduced treatment. Quantitative real-time PCR (qPCR) analysis revealed a more noteworthy change in the population of the microbial communities due to temperature than the presence of phenol with the methanogens being the dominating species at 35 °C. The findings suggest that the planned operation of the ABR could be a promising choice for CH4-enriched biogas and COD removal from phenolic wastewater.
Collapse
Affiliation(s)
- Nishat Khan
- Department of Chemistry, Environmental Research Laboratory, Aligarh Muslim University, Aligarh, Uttar Pradesh, 202002, India
| | - Mohammad Danish Khan
- Department of Chemistry, Environmental Research Laboratory, Aligarh Muslim University, Aligarh, Uttar Pradesh, 202002, India
| | - Suhail Sabir
- Department of Chemistry, Environmental Research Laboratory, Aligarh Muslim University, Aligarh, Uttar Pradesh, 202002, India
| | - Abdul-Sattar Nizami
- Sustainable Development Study Centre, Government College University, Lahore, Pakistan.
| | - Abdul Hakeem Anwer
- Department of Chemistry, Environmental Research Laboratory, Aligarh Muslim University, Aligarh, Uttar Pradesh, 202002, India
| | - Mohammad Rehan
- Center of Excellence in Environmental Studies (CEES), King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mohammad ZainKhan
- Department of Chemistry, Environmental Research Laboratory, Aligarh Muslim University, Aligarh, Uttar Pradesh, 202002, India.
| |
Collapse
|
5
|
Khan MF, Yu L, Tay JH, Achari G. Coaggregation of bacterial communities in aerobic granulation and its application on the biodegradation of sulfolane. JOURNAL OF HAZARDOUS MATERIALS 2019; 377:206-214. [PMID: 31163349 DOI: 10.1016/j.jhazmat.2019.05.076] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 03/09/2019] [Accepted: 05/26/2019] [Indexed: 06/09/2023]
Abstract
Aerobic granulation is regarded as the future technology for wastewater treatment that can replace conventional activated sludge. In this study, two approaches of forming sulfolane degrading aerobic granules (SDAG) were successfully developed and evaluated. These include adaptation of pre-grown granules to sulfolane environment and coaggregation of pre-grown granules with bacterial culture native to sulfolane contaminated site. The adaption method required a longer period to form robust SDAG compared to coaggregation method where degradation of sulfolane was observed within 24 h. Electronic images revealed dominant filamentous bacteria on the surface of granules while DNA analysis unveiled the complexity of the dynamic change of microbial community during aerobic granule formation. The rate of sulfolane degradation by coaggregated granules reduced as the concentration of carbon source increased, nevertheless, the rate increased with increased biomass. In addition, the presence of co-contaminants can slightly impact the ability of newly cultivated granules to degrade sulfolane. Finally, the stability and settleability of the new aerobic granules was investigated under different environmental conditions. About 30% of the aerobic granules were lost after 14 d of operation without any continuous supply of carbon sources. The surviving SDAGs continued to display an intact structure coupled with good settleability.
Collapse
Affiliation(s)
- Muhammad Faizan Khan
- Department of Civil Engineering, University of Calgary, 2500 University Drive NW, Calgary, AB, T2N 1N4, Canada
| | - Linlong Yu
- Department of Civil Engineering, University of Calgary, 2500 University Drive NW, Calgary, AB, T2N 1N4, Canada
| | - Joo Hwa Tay
- Department of Civil Engineering, University of Calgary, 2500 University Drive NW, Calgary, AB, T2N 1N4, Canada
| | - Gopal Achari
- Department of Civil Engineering, University of Calgary, 2500 University Drive NW, Calgary, AB, T2N 1N4, Canada.
| |
Collapse
|
6
|
Khan N, Khan MD, Nizami AS, Rehan M, Shaida A, Ahmad A, Khan MZ. Energy generation through bioelectrochemical degradation of pentachlorophenol in microbial fuel cell. RSC Adv 2018; 8:20726-20736. [PMID: 35542361 PMCID: PMC9080799 DOI: 10.1039/c8ra01643g] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2018] [Accepted: 05/28/2018] [Indexed: 12/05/2022] Open
Abstract
Bio-electrochemical degradation of pentachlorophenol was carried out in single as well as dual chambered microbial fuel cell (MFC) with simultaneous production of electricity. The maximum cell potential was recorded to be 787 and 1021 mV in single and dual chambered systems respectively. The results presented nearly 66 and 89% COD removal in single and dual chambered systems with corresponding power densities of 872.7 and 1468.85 mW m−2 respectively. The highest coulombic efficiency for single and dual chambered counterparts was found to be 33.9% and 58.55%. GC-MS data revealed that pentachlorophenol was more effectively degraded under aerobic conditions in dual-chambered MFC. Real-time polymerase chain reaction showed the dominance of exoelectrogenic Geobacter in the two reactor systems with a slightly higher concentration in the dual-chambered system. The findings of this work suggested that the aerobic treatment of pentachlorophenol in cathodic compartment of dual chambered MFC is better than its anaerobic treatment in single chambered MFC in terms of chemical oxygen demand (COD) removal and output power density. Bio-electrochemical degradation of pentachlorophenol was carried out in single as well as dual chambered microbial fuel cell (MFC) with simultaneous production of electricity.![]()
Collapse
Affiliation(s)
- Nishat Khan
- Environmental Research Laboratory
- Department of Chemistry
- Aligarh Muslim University
- Aligarh 202 002
- India
| | - M. Danish Khan
- Environmental Research Laboratory
- Department of Chemistry
- Aligarh Muslim University
- Aligarh 202 002
- India
| | - Abdul-Sattar Nizami
- Center of Excellence in Environmental Studies (CEES)
- King Abdulaziz University
- Jeddah
- Saudi Arabia
| | - Mohammad Rehan
- Center of Excellence in Environmental Studies (CEES)
- King Abdulaziz University
- Jeddah
- Saudi Arabia
| | - Azfar Shaida
- Department of Chemistry
- Indian Institute of Technology
- Roorkee 247667
- India
| | - Anees Ahmad
- Environmental Research Laboratory
- Department of Chemistry
- Aligarh Muslim University
- Aligarh 202 002
- India
| | - Mohammad Z. Khan
- Environmental Research Laboratory
- Department of Chemistry
- Aligarh Muslim University
- Aligarh 202 002
- India
| |
Collapse
|
7
|
Khan MD, Khan N, Nizami AS, Rehan M, Sabir S, Khan MZ. Effect of co-substrates on biogas production and anaerobic decomposition of pentachlorophenol. BIORESOURCE TECHNOLOGY 2017; 238:492-501. [PMID: 28475991 DOI: 10.1016/j.biortech.2017.04.063] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Revised: 04/16/2017] [Accepted: 04/17/2017] [Indexed: 06/07/2023]
Abstract
This study aims to examine the effect of different co-substrates on the anaerobic degradation of pentachlorophenol (PCP) with simultaneous production of biogas. Acetate and glucose were added as co-substrates to monitor and compare the methanogenic reaction during PCP degradation. During the experiment, a chemical oxygen demand (COD) removal efficiency of 80% was achieved. Methane (CH4) production was higher in glucose-fed anaerobic reactors with the highest amount of CH4 (303.3µL) produced at 200ppm of PCP. Scanning electron microscopy (SEM) demonstrates the high porous structure of anaerobic sludge with uniform channels confirming better mass transfer and high PCP removal. Quantitative real-time PCR (qPCR) revealed that methanogens were the dominating species while some sulfate reducing bacteria (SRBs) were also found in the reactors. The study shows that strategic operation of the anaerobic reactor can be a feasible option for efficient degradation of complex substrates like PCP along with the production of biogas.
Collapse
Affiliation(s)
- Mohammad Danish Khan
- Environmental Research Laboratory, Department of Chemistry, Aligarh Muslim University, Aligarh 202002, Uttar Pradesh, India
| | - Nishat Khan
- Environmental Research Laboratory, Department of Chemistry, Aligarh Muslim University, Aligarh 202002, Uttar Pradesh, India
| | - Abdul-Sattar Nizami
- Center of Excellence in Environmental Studies (CEES), King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mohammad Rehan
- Center of Excellence in Environmental Studies (CEES), King Abdulaziz University, Jeddah, Saudi Arabia
| | - Suhail Sabir
- Environmental Research Laboratory, Department of Chemistry, Aligarh Muslim University, Aligarh 202002, Uttar Pradesh, India
| | - Mohammad Zain Khan
- Environmental Research Laboratory, Department of Chemistry, Aligarh Muslim University, Aligarh 202002, Uttar Pradesh, India.
| |
Collapse
|
8
|
|
9
|
Khan MZ, Mondal PK, Sabir S. Aerobic granulation for wastewater bioremediation: A review. CAN J CHEM ENG 2012. [DOI: 10.1002/cjce.21729] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|