1
|
He J, Liu F, Xiao C, Sun H, Li J, Zhu Z, Liang W, Li A. Fe 3O 4/PPy-Coated Superhydrophilic Polymer Porous Foam: A Double Layered Photothermal Material with a Synergistic Light-to-Thermal Conversion Effect toward Desalination. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:12397-12408. [PMID: 34633189 DOI: 10.1021/acs.langmuir.1c02013] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Solar steam generation has been considered as one of the most promising strategies for production of fresh water using renewable solar energy. Herein, we prepared a polymer porous foam (HPSS) by a facile hydrothermal method. The HPSS presents a superhydrophilic wettability, an interpenetrating macroporous structure, and low thermal conductivity, which can well satisfy the criteria as an ideal candidate for photothermal materials. The HPSS/Fe3O4/PPy (polypyrrole) evaporator, of which a Fe3O4/PPy binary optical system served as a light absorption layer and HPSS was used as a porous substrate, was constructed through in situ growth of Fe3O4 particles followed by interfacial polymerization of PPy on the surface of HPSS. HPSS/Fe3O4/PPy shows an excellent light absorption capacity (92%) and photothermal conversion performance, with the solar energy conversion efficiency reaching up to 94.7% under 1 sun irradiation, which is much higher than that of HPSS/PPy (84.8%) composed of a unitary PPy light absorption layer. Interestingly, the presence of Fe3O4 particles could make directional migration in a magnetic field possible, thus facilitating its recovery as a self-floating solar generator in an open water area. Moreover, the HPSS/Fe3O4/PPy evaporator displays outstanding salt resistance properties and stability in various saline solutions, thus having great potential in practical desalination.
Collapse
Affiliation(s)
- Jingxian He
- College of Petrochemical Technology, Lanzhou University of Technology, Langongping Road 287, Lanzhou 730050, P. R. China
- School of Chemistry and Chemical Engineering, Lanzhou City University, Jiefang Road 11, Lanzhou 730070, P. R. China
| | - Fang Liu
- College of Petrochemical Technology, Lanzhou University of Technology, Langongping Road 287, Lanzhou 730050, P. R. China
- School of Chemistry and Chemical Engineering, Lanzhou City University, Jiefang Road 11, Lanzhou 730070, P. R. China
| | - Chaohu Xiao
- College of Petrochemical Technology, Lanzhou University of Technology, Langongping Road 287, Lanzhou 730050, P. R. China
| | - Hanxue Sun
- College of Petrochemical Technology, Lanzhou University of Technology, Langongping Road 287, Lanzhou 730050, P. R. China
| | - Jiyan Li
- College of Petrochemical Technology, Lanzhou University of Technology, Langongping Road 287, Lanzhou 730050, P. R. China
| | - Zhaoqi Zhu
- College of Petrochemical Technology, Lanzhou University of Technology, Langongping Road 287, Lanzhou 730050, P. R. China
| | - Weidong Liang
- College of Petrochemical Technology, Lanzhou University of Technology, Langongping Road 287, Lanzhou 730050, P. R. China
| | - An Li
- College of Petrochemical Technology, Lanzhou University of Technology, Langongping Road 287, Lanzhou 730050, P. R. China
| |
Collapse
|
2
|
Yuan XS, Guo ZY, Geng HZ, Rhen DS, Wang L, Yuan XT, Li J. Enhanced performance of conductive polysulfone/MWCNT/PANI ultrafiltration membrane in an online fouling monitoring application. J Memb Sci 2019. [DOI: 10.1016/j.memsci.2019.01.010] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|