1
|
Cavalcante WA, de Menezes CA, da Silva Júnior FCG, Gehring TA, Leitão RC, Zaiat M. From start-up to maximum loading: An approach for methane production in upflow anaerobic sludge blanket reactor fed with the liquid fraction of fruit and vegetable waste. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 335:117578. [PMID: 36863146 DOI: 10.1016/j.jenvman.2023.117578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/30/2023] [Accepted: 02/22/2023] [Indexed: 06/18/2023]
Abstract
This investigation provides a reproducible approach for determining the limits of an upflow anaerobic sludge blanket (UASB) reactor designed for the methanization of the liquid fraction of fruit and vegetable waste (FVWL). Two identical mesophilic UASB reactors were operated for 240 days with a three-day fixed hydraulic retention time and an organic load rate (OLR) increased from 1.8 to 10 gCOD L-1 d-1. Because of the previous estimation of flocculent-inoculum methanogenic activity, it was possible to design a safe OLR for the quick start-up of both UASB reactors. The operational variables obtained from the operation of the UASB reactors did not show statistical differences, ensuring the experiment's reproducibility. As a result, the reactors achieved methane yield close to 0.250 LCH4 gCOD-1 up to the OLR of 7.7 gCOD L-1 d-1. Furthermore, the maximum volumetric methane production rate of 2.0 LCH4 L-1 d-1 was discovered for the OLR ranges between 7.7 and 10 gCOD L-1 d-1. The possible overload at OLR of 10 gCOD L-1 d-1 resulted in a significant reduction of methane production in both UASB reactors. Based on the methanogenic activity of the UASB reactors sludge, a maximum loading capacity of approximately 8 gCOD L-1 d-1 was estimated.
Collapse
Affiliation(s)
- Willame A Cavalcante
- Biological Processes Laboratory, São Carlos School of Engineering, University of São Paulo (EESC/USP), Av. João Dagnone 1100, ZIP 13563-120, São Carlos, SP, Brazil; Embrapa Tropical Agroindustry, Rua Dra. Sara Mesquita 2270, ZIP 60511-110, Fortaleza, CE, Brazil.
| | | | - Francisco C G da Silva Júnior
- Biological Processes Laboratory, São Carlos School of Engineering, University of São Paulo (EESC/USP), Av. João Dagnone 1100, ZIP 13563-120, São Carlos, SP, Brazil; Embrapa Tropical Agroindustry, Rua Dra. Sara Mesquita 2270, ZIP 60511-110, Fortaleza, CE, Brazil.
| | - Tito A Gehring
- Institute of Urban Water Management and Environmental Engineering, Department of Civil and Environmental Engineering, Ruhr-Universität Bochum, Universitätsstr.150, Bochum, 44801, Germany.
| | - Renato C Leitão
- Embrapa Tropical Agroindustry, Rua Dra. Sara Mesquita 2270, ZIP 60511-110, Fortaleza, CE, Brazil.
| | - Marcelo Zaiat
- Biological Processes Laboratory, São Carlos School of Engineering, University of São Paulo (EESC/USP), Av. João Dagnone 1100, ZIP 13563-120, São Carlos, SP, Brazil.
| |
Collapse
|
2
|
Enhanced Biogas Production of Cassava Wastewater Using Zeolite and Biochar Additives and Manure Co-Digestion. ENERGIES 2020. [DOI: 10.3390/en13020491] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Currently, there are challenges with proper disposal of cassava processing wastewater, and a need for sustainable energy in the cassava industry. This study investigated the impact of co-digestion of cassava wastewater (CW) with livestock manure (poultry litter (PL) and dairy manure (DM)), and porous adsorbents (biochar (B-Char) and zeolite (ZEO)) on energy production and treatment efficiency. Batch anaerobic digestion experiments were conducted, with 16 treatments of CW combined with manure and/or porous adsorbents using triplicate reactors for 48 days. The results showed that CW combined with ZEO (3 g/g total solids (TS)) produced the highest cumulative CH4 (653 mL CH4/g VS), while CW:PL (1:1) produced the most CH4 on a mass basis (17.9 mL CH4/g substrate). The largest reduction in lag phase was observed in the mixture containing CW (1:1), PL (1:1), and B-Char (3 g/g TS), yielding 400 mL CH4/g volatile solids (VS) after 15 days of digestion, which was 84.8% of the total cumulative CH4 from the 48-day trial. Co-digesting CW with ZEO, B-Char, or PL provided the necessary buffer needed for digestion of CW, which improved the process stability and resulted in a significant reduction in chemical oxygen demand (COD). Co-digestion could provide a sustainable strategy for treating and valorizing CW. Scale-up calculations showed that a CW input of 1000–2000 L/d co-digested with PL (1:1) could produce 9403 m3 CH4/yr using a 50 m3 digester, equivalent to 373,327 MJ/yr or 24.9 tons of firewood/year. This system would have a profit of $5642/yr and a $47,805 net present value.
Collapse
|