1
|
Acid-Modified Clays for the Catalytic Obtention of 5-Hydroxymethylfurfural from Glucose. CHEMENGINEERING 2022. [DOI: 10.3390/chemengineering6040057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
5-hydroxymethylfurfural (5-HMF) is an important platform molecule for the synthesis of high-added value products. Several synthesized clay materials, such as mesoporous hectorite and fluorohectorite, in addition to commercial montmorillonite K-10, have been acid modified by different methodologies to be applied as catalysts for the obtention of 5-HMF from glucose. The effects of the Brønsted and/or Lewis acidity, the reaction temperature and time, and the catalyst/glucose ratio on the conversion but especially on the selectivity to 5-HMF have been studied. By comparing the synthesized clays, the best selectivity to 5-HMF (36%) was obtained at 140 °C for 4 h with H-fluorohectorite because of the presence of strong Brønsted acid sites, although its conversion was the lowest (33%) due to its low amounts of Lewis acid sites. Different strategies, such as physical mixtures of montmorillonite K10, which contains high amounts of Lewis acid centers, with Amberlyst-15, which has high amounts of Brønsted acid sites, or the incorporation of rhenium compounds, were carried out. The best selectivity to 5-HMF (62%) was achieved with a mixture of 44 wt % Amberlyst-15 and 56 wt % of montmorillonite K10 for a 56% of conversion at 140 °C for 4 h. This proportion optimized the amount of Brønsted and Lewis acid sites in the catalyst under these reaction conditions.
Collapse
|
2
|
Rusanen A, Lahti R, Lappalainen K, Kärkkäinen J, Hu T, Romar H, Lassi U. Catalytic conversion of glucose to 5-hydroxymethylfurfural over biomass-based activated carbon catalyst. Catal Today 2020. [DOI: 10.1016/j.cattod.2019.02.040] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
3
|
Li M, Yu X, Zhou C, Yagoub AEA, Ji Q, Chen L. Construction of an integrated platform for 5-HMF production and separation based on ionic liquid aqueous two-phase system. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.113529] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
4
|
|