1
|
Jiang T, Zhou S, Hong Y, Poloni E, Saiz E, Bouville F. Inorganic/Inorganic Composites Through Emulsion Templating. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024:e2411352. [PMID: 39707700 DOI: 10.1002/adma.202411352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 11/30/2024] [Indexed: 12/23/2024]
Abstract
Inorganic/inorganic composites are found in multiple applications crucial for the energy transition, from nuclear reactors to energy storage devices. Their microstructures dictate their properties from mass transport to fracture resistance. Consequently, there has been a multitude of processes developed to control them, from powder mixing and the use of short or long fibers, to tape casting for laminates up to recent 3D printing. Here, emulsions and slip casting are combined into a simpler, broadly available, inexpensive processing platform that allows for in situ control of composite microstructure while also enabling complex 3D shaping. This study shows that slip casting of emulsions triggers a two-step solvent removal, opening the possibility for the conformal coating of pores. This process is showcased by producing strong and lightweight alumina scaffolds reinforced by a conformal zirconia coating. In addition, by manipulating magnetically responsive droplets, their distribution can be controlled, allowing for the formation of inorganic fibers inside an inorganic matrix in situ during slip casting. Using this approach, alumina has been reinforced with aligned metallic iron fibers to prepare composites with a work of fracture an order of magnitude higher than the pure ceramics.
Collapse
Affiliation(s)
- Tianhui Jiang
- Centre for Advanced Structural Ceramics, Department of Materials, Imperial College London, London, SW7 2AZ, UK
| | - Shitong Zhou
- Centre for Advanced Structural Ceramics, Department of Materials, Imperial College London, London, SW7 2AZ, UK
| | - Yinglun Hong
- Centre for Advanced Structural Ceramics, Department of Materials, Imperial College London, London, SW7 2AZ, UK
| | - Erik Poloni
- Centre for Advanced Structural Ceramics, Department of Materials, Imperial College London, London, SW7 2AZ, UK
| | - Eduardo Saiz
- Centre for Advanced Structural Ceramics, Department of Materials, Imperial College London, London, SW7 2AZ, UK
| | - Florian Bouville
- Centre for Advanced Structural Ceramics, Department of Materials, Imperial College London, London, SW7 2AZ, UK
| |
Collapse
|
2
|
Basko A, Lebedeva T, Yurov M, Ilyasova A, Elyashevich G, Lavrentyev V, Kalmykov D, Volkov A, Pochivalov K. Mechanism of PVDF Membrane Formation by NIPS Revisited: Effect of Precipitation Bath Nature and Polymer-Solvent Affinity. Polymers (Basel) 2023; 15:4307. [PMID: 37959987 PMCID: PMC10650574 DOI: 10.3390/polym15214307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 10/31/2023] [Accepted: 11/01/2023] [Indexed: 11/15/2023] Open
Abstract
A new interpretation of the mechanism of the polyvinylidene fluoride (PVDF) membrane formation using the nonsolvent-induced phase separation (NIPS) method based on an analysis of the complete experimental phase diagram for the three-component mixture PVDF-dimethyl acetamide (DMAc)-water is proposed. The effects of the precipitation bath's harshness and thermodynamic affinity of the polymer's solvent on the morphology, crystalline structure, transport and physical-mechanical properties of the membranes are investigated. These characteristics were studied via scanning electron microscopy, wide-angle X-ray scattering, liquid-liquid porosimetry and standard methods of physico-mechanical analysis. It is established that an increase in DMAc concentration in the precipitation bath results in the growth of mean pore size from ~60 to ~150 nm and an increase in permeance from ~2.8 to ~8 L m-2 h-1 bar-1. It was observed that pore size transformations are accompanied by changes in the tensile strength of membranes from ~9 to ~11 and to 6 MPa, which were explained by the degeneration of finger-like pores and appearance of spherulitic structures in the samples. The addition of water to the dope solution decreased both the transport (mean pore size changed from ~55 to ~25 nm and permeance reduced from ~2.8 to ~0.5 L m-2 h-1 bar-1) and mechanical properties of the membranes (tensile strength decreased from ~9 to ~6 MPa). It is possible to conclude that the best membrane quality may be reached using pure DMAc as a solvent and a precipitation bath containing 10-30% wt. of DMAc, in addition to water.
Collapse
Affiliation(s)
- Andrey Basko
- G.A. Krestov Institute of Solution Chemistry of the Russian Academy of Sciences, 1 ul. Akademicheskaya, 153045 Ivanovo, Russia; (A.B.); (T.L.); (M.Y.); (A.I.); (D.K.)
| | - Tatyana Lebedeva
- G.A. Krestov Institute of Solution Chemistry of the Russian Academy of Sciences, 1 ul. Akademicheskaya, 153045 Ivanovo, Russia; (A.B.); (T.L.); (M.Y.); (A.I.); (D.K.)
| | - Mikhail Yurov
- G.A. Krestov Institute of Solution Chemistry of the Russian Academy of Sciences, 1 ul. Akademicheskaya, 153045 Ivanovo, Russia; (A.B.); (T.L.); (M.Y.); (A.I.); (D.K.)
| | - Anna Ilyasova
- G.A. Krestov Institute of Solution Chemistry of the Russian Academy of Sciences, 1 ul. Akademicheskaya, 153045 Ivanovo, Russia; (A.B.); (T.L.); (M.Y.); (A.I.); (D.K.)
| | - Galina Elyashevich
- Institute of Macromolecular Compounds of the Russian Academy of Sciences, 31 Bolshoy pr., 199004 St. Petersburg, Russia; (G.E.); (V.L.)
| | - Viktor Lavrentyev
- Institute of Macromolecular Compounds of the Russian Academy of Sciences, 31 Bolshoy pr., 199004 St. Petersburg, Russia; (G.E.); (V.L.)
| | - Denis Kalmykov
- G.A. Krestov Institute of Solution Chemistry of the Russian Academy of Sciences, 1 ul. Akademicheskaya, 153045 Ivanovo, Russia; (A.B.); (T.L.); (M.Y.); (A.I.); (D.K.)
- A.V. Topchiev Institute of Petrochemical Synthesis of the Russian Academy of Sciences, 29 Leninsky Prospect, 119991 Moscow, Russia;
| | - Alexey Volkov
- A.V. Topchiev Institute of Petrochemical Synthesis of the Russian Academy of Sciences, 29 Leninsky Prospect, 119991 Moscow, Russia;
| | - Konstantin Pochivalov
- G.A. Krestov Institute of Solution Chemistry of the Russian Academy of Sciences, 1 ul. Akademicheskaya, 153045 Ivanovo, Russia; (A.B.); (T.L.); (M.Y.); (A.I.); (D.K.)
| |
Collapse
|
3
|
Dehghanghadikolaei A, Abdul Halim B, Sojoudi H. Impact of Processing Parameters on Contactless Emulsification via Corona Discharge. ACS OMEGA 2023; 8:24931-24941. [PMID: 37483189 PMCID: PMC10357431 DOI: 10.1021/acsomega.3c01369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 06/07/2023] [Indexed: 07/25/2023]
Abstract
A contactless emulsification method is presented using corona discharge. The corona discharge forms using a pin-to-plate configuration, creating a non-uniform electric field. This results in a simultaneous electrohydrodynamic (EHD) pumping of silicone oil and an electroconvection of water droplets that accelerate and submerge inside the oil, leading to a continuous water-in-oil (W/O) emulsion formation process. The impact of the oil viscosity and corona generating AC and DC electric fields (i.e., voltage and frequency) on the characteristics of the emulsions is studied. The emulsification power consumption using the AC and DC electric fields is calculated and compared to traditional emulsion formation methods. While using the DC electric field results in the formation of uniform emulsions, the AC electric field is readily available and uses less power for the emulsification. This is facile, contactless, and energy-efficient for the continuous formation of W/O emulsions.
Collapse
|
4
|
Wu Y, Li W, Zhu H, Martin GJO, Ashokkumar M. Ultrasound-enhanced interfacial adsorption and inactivation of soy trypsin inhibitors. ULTRASONICS SONOCHEMISTRY 2023; 94:106315. [PMID: 36738694 PMCID: PMC9932488 DOI: 10.1016/j.ultsonch.2023.106315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 01/24/2023] [Accepted: 01/29/2023] [Indexed: 06/18/2023]
Abstract
In this study, liquid-liquid interfacial protein adsorption was proposed as a means of inactivating soy trypsin inhibitors (TIs, including Kunitz (KTI) and Bowman-Birk inhibitor (BBI)). Hexane-water was first selected as a model system to compare three emulsification methods (hand shaking, rotor-stator and ultrasound mixing). Ultrasound could generate the smallest and least polydisperse emulsion droplets, resulting in highest interfacial adsorption amount of KTI and BBI as well as the highest inactivation percentage of TIs (p < 0.05). Therefore, ultrasound was selected to further explore the effect of the non-aqueous phase on interfacial adsorption and inactivation kinetics of TIs in a food emulsion system containing vegetable oil (VTO). The adsorption amounts of KTI and BBI in the VTO-aqueous emulsion increased by ∼ 25 % compared to the hexane-aqueous emulsion. In addition, the adsorption amounts of KTI and BBI were rapidly increased as a function of sonication time, especially for the hexane-aqueous emulsion system. This result suggests that such inactivation of TIs could be implemented in continuous systems for large-scale processing. Finally, the pathways of interface-induced inactivation of BBI and KTI were investigated based on separate experiments on individual BBI and KTI systems. The results showed that the interface adsorption caused the changes in the secondary and tertiary structure of KTI that led to its activitation. However, BBI was quite stable at the liquid-liquid interface without significant conformational change. Overall, ultrasound-assisted interfacial adsorption can be considered a rapid and highly efficient method to inactivate KTI.
Collapse
Affiliation(s)
- Yue Wu
- Sonochemistry Group, School of Chemistry, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Wu Li
- Algal Processing Group, Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Haiyan Zhu
- Sonochemistry Group, School of Chemistry, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Gregory J O Martin
- Algal Processing Group, Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia.
| | - Muthupandian Ashokkumar
- Sonochemistry Group, School of Chemistry, The University of Melbourne, Parkville, Victoria 3010, Australia.
| |
Collapse
|
5
|
El-Sheekh MM, El-Nagar AA, ElKelawy M, Bastawissi HAE. Bioethanol from wheat straw hydrolysate solubility and stability in waste cooking oil biodiesel/diesel and gasoline fuel at different blends ratio. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2023; 16:15. [PMID: 36726174 PMCID: PMC9890877 DOI: 10.1186/s13068-023-02264-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 01/11/2023] [Indexed: 02/03/2023]
Abstract
The work focuses on studying the solubility and stability of dissolved bioethanol as a fuel additive in different fuel blends of gasoline, diesel, 50% diesel/50% biodiesel. Dissolved ethanol fuel appears as particles with a unique size distribution inside the whole fuel blends, and its stability was measured in this work. Bioethanol dissolved fuel particles stability was improved after blending the bioethanol with 50% diesel/50% biodiesel than pure diesel or pure gasoline fuel alone. The obtained results reveal that the lowest bioethanol particles stability was obtained when commixed with gasoline and the suspended ethanol particles completely accumulated at different concentrations of bioethanol in the fuel blends of 2%, 4%, 6%, 8%, 10%, and 12% by volume after 1 h of mixing time. Furthermore, the measured data of the bioethanol particles size distribution reveals that the suspended stability in the diesel blend improve slightly for all bioethanol concentrations of 10%, 15%, 20%, 25%, and 30% by volume. While the bioethanol concentrations of 5% show acceptable particles stability and size distribution during the whole experiments time. Obtained results show that bioethanol suspended particles stability was enhanced for 50% diesel/50% biodiesel blend with different bioethanol concentrations of 5%, 10%, 15%, 20%, 25%, and 30% by volume basis. However, the size of the particles increased as the bioethanol concentration rose with the passage of time.
Collapse
Affiliation(s)
- Mostafa M. El-Sheekh
- grid.412258.80000 0000 9477 7793Botany Department, Faculty of Science, Tanta University, Tanta, 31527 Egypt
| | - Aya A. El-Nagar
- Microbial Biotechnology Department, Genetic Engineering and Biotechnology Research Institute, Sadat City University, El Sadat City, Egypt
| | - Medhat ElKelawy
- grid.412258.80000 0000 9477 7793Mechanical Power Engineering Departments, Faculty of Engineering, Tanta University, Tanta, Egypt
| | - Hagar Alm-Eldin Bastawissi
- grid.412258.80000 0000 9477 7793Mechanical Power Engineering Departments, Faculty of Engineering, Tanta University, Tanta, Egypt
| |
Collapse
|
6
|
Jiang J, Wang Z, Wang C, Shi L, Hou J, Zhang L. Model Emulsions Stabilized with Nonionic Surfactants: Structure and Rheology Across Catastrophic Phase Inversion. ACS OMEGA 2022; 7:44012-44020. [PMID: 36506205 PMCID: PMC9730459 DOI: 10.1021/acsomega.2c05388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 11/15/2022] [Indexed: 06/17/2023]
Abstract
The catastrophic phase inversion process of model emulsions (water/Span 80-Tween 80/heptane) from oil-in-water to water-in-oil emulsion was investigated. During this process, the phase inversion of the emulsion was monitored through Fourier transform infrared spectroscopy (FT-IR). In emulsions without NaCl, oil-in-water gel emulsions are formed prior to phase inversion. As the HLB value increases, the oil volume fraction required for phase inversion becomes higher. Polydisperse distribution of the gel emulsion is observed from microscope optical images. The Turbiscan Lab stability analyzer indicates that O/W gel emulsions before the phase inversion has good stability at 50 °C. Rheological measurements reveal that emulsions exhibit non-Newtonian behavior. The viscosity of the gel emulsions increases significantly prior to phase inversion. As the oil volume fraction increases, the storage modulus and loss modulus of the gel emulsion increase to a maximum, at which catastrophic phase inversion occurs. In emulsions with NaCl, there is no oil-in-water gel emulsion formed before phase inversion. The physicochemical properties of the emulsion play a crucial role in whether gel emulsions are produced during catastrophic phase inversion. These gel emulsions have the potential to diversify the applications in crude oil extraction, drug delivery systems, packaging materials, and other fields.
Collapse
Affiliation(s)
- Jie Jiang
- College
of Chemistry and Chemical Engineering, China
University of Petroleum (East China), Qingdao266580, China
| | - Zi Wang
- College
of Chemistry and Chemical Engineering, China
University of Petroleum (East China), Qingdao266580, China
| | - Chuangye Wang
- College
of Chemistry and Chemical Engineering, China
University of Petroleum (East China), Qingdao266580, China
| | - Lina Shi
- College
of Science, China University of Petroleum
(East China), Qingdao266580, China
| | - Jian Hou
- School
of Petroleum Engineering, China University
of Petroleum (East China), Qingdao266580, China
| | - Longli Zhang
- College
of Chemistry and Chemical Engineering, China
University of Petroleum (East China), Qingdao266580, China
| |
Collapse
|
7
|
Keshanidokht S, Via MA, Falco CY, Clausen MP, Risbo J. Zein-stabilized emulsions by ethanol addition; stability and microstructure. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
8
|
Wang D, Xue Y, You C, Lei W, Zhong F, Li Y, Wang P, Li K, Zheng Y, Yang X. Effect of nonsolvent on the structures and properties of poly(arylene ether nitrile) films prepared by the phase inversion method. J Appl Polym Sci 2022. [DOI: 10.1002/app.53306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Dengyu Wang
- School of Mechanical Engineering Chengdu University Chengdu China
| | - Ya Xue
- School of Mechanical Engineering Chengdu University Chengdu China
| | - Chen You
- School of Mechanical Engineering Chengdu University Chengdu China
| | - Wenwu Lei
- School of Mechanical Engineering Chengdu University Chengdu China
| | - Fei Zhong
- School of Mechanical Engineering Chengdu University Chengdu China
- Sichuan Province Engineering Technology Research Center of Powder Metallurgy Chengdu University Chengdu China
| | - Ying Li
- School of Mechanical Engineering Chengdu University Chengdu China
- Sichuan Province Engineering Technology Research Center of Powder Metallurgy Chengdu University Chengdu China
| | - Pan Wang
- School of Mechanical Engineering Chengdu University Chengdu China
- Sichuan Province Engineering Technology Research Center of Powder Metallurgy Chengdu University Chengdu China
| | - Kui Li
- School of Mechanical Engineering Chengdu University Chengdu China
- Sichuan Province Engineering Technology Research Center of Powder Metallurgy Chengdu University Chengdu China
| | - Yun Zheng
- Key Laboratory of Optoelectronic Chemical Materials and Devices, Ministry of Education Jianghan University Wuhan China
| | - Xulin Yang
- School of Mechanical Engineering Chengdu University Chengdu China
- Sichuan Province Engineering Technology Research Center of Powder Metallurgy Chengdu University Chengdu China
- Key Laboratory of Optoelectronic Chemical Materials and Devices, Ministry of Education Jianghan University Wuhan China
| |
Collapse
|
9
|
Sander A, Petračić A, Zokić I, Vrsaljko D. Scaling up extractive deacidification of waste cooking oil. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 316:115222. [PMID: 35544978 DOI: 10.1016/j.jenvman.2022.115222] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 04/19/2022] [Accepted: 05/01/2022] [Indexed: 06/15/2023]
Abstract
Biodiesel produced from waste feedstocks can play a significant role in fighting climate change, improperly disposed waste and growing energy demand. Waste feedstocks such as used cooking oil have a great potential for energy production. However, they often have to be purified from free fatty acids prior to biodiesel production. Extractive deacidification with deep eutectic solvents is a promising alternative to conventional purification methods. To evaluate the process of extractive deacidification of waste cooking oil, a full set of physical, hydrodynamic and kinetic data were experimentally determined on a laboratory scale. Hydrodynamic and kinetic experiments were performed in three geometrically similar jacketed agitated vessels. Vessels were equipped with axial flow impeller (four pitched blade impeller). Physical properties (density, viscosity and surface tension) were experimentally determined. Preliminary hydrodynamic experiments involved several model systems without mass transfer. As a result, correlation between power number and Reynolds number as well as scale-up criterion was developed. Obtained dependencies were correlated with the physical properties. Mixing intensity for achieving complete dispersion was determined. Second stage of investigation involved two sets of experiments, hydrodynamic and kinetic, with interphase mass transfer (the extraction of free fatty acids from waste cooking oil with deep eutectic solvent, potassium carbonate:ethylene glycol, 1:10). Obtained results enabled understanding interphase mass transfer and prediction of mass transfer coefficient from the derived dimensionless correlations. The values of volumetric mass transfer coefficients were smaller for the dispersed phase, indicating that the prevailing mass transfer resistance was within the droplets. The working hypothesis was that the same process result should be achieved at the same dispersion rate, and that hypothesis was confirmed - at all scales extraction efficiency was 97.9 ± 0.1%.
Collapse
Affiliation(s)
- Aleksandra Sander
- Department of Mechanical and Thermal Process Engineering, Faculty of Chemical Engineering and Technology, University of Zagreb, Zagreb, Croatia.
| | - Ana Petračić
- Department of Mechanical and Thermal Process Engineering, Faculty of Chemical Engineering and Technology, University of Zagreb, Zagreb, Croatia.
| | - Iva Zokić
- Department of Mechanical and Thermal Process Engineering, Faculty of Chemical Engineering and Technology, University of Zagreb, Zagreb, Croatia.
| | - Domagoj Vrsaljko
- Department of Thermodynamics, Mechanical Engineering and Energy, Faculty of Chemical Engineering and Technology, University of Zagreb, Zagreb, Croatia.
| |
Collapse
|
10
|
Dehghanghadikolaei A, Shahbaznezhad M, Abdul Halim B, Sojoudi H. Contactless Method of Emulsion Formation Using Corona Discharge. ACS OMEGA 2022; 7:7045-7056. [PMID: 35252695 PMCID: PMC8892634 DOI: 10.1021/acsomega.1c06765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 02/04/2022] [Indexed: 06/14/2023]
Abstract
Electroemulsification methods use electrohydrodynamic (EHD) forces to manipulate fluids and droplets for emulsion formation. Here, a top-down method is presented using a contactless corona discharge for simultaneous emulsion formation and its pumping/collection. The corona discharge forms using a sharp conductive electrode connected to a high-voltage source that ionizes water vapor droplets (formed by a humidifier) and creates an ionic wind (electroconvection), dragging them into an oil medium. The nonuniform electric field induced by the corona discharge also drives the motion of the oil medium via an EHD pumping effect utilizing a modulated bottom electrode geometry. By these two effects, this contactless method enables the immersion of the water droplets into the moving oil medium, continuously forming a water-in-oil (W/O) emulsion. The impact of corona discharge voltage, vertical and horizontal distances between the two electrodes, and depth of the silicone oil on sizes of the formed emulsions is studied. This is a low-cost and contactless process enabling the continuous formation of the W/O emulsions.
Collapse
Affiliation(s)
- Amir Dehghanghadikolaei
- Department of Mechanical,
Industrial, and Manufacturing, The University
of Toledo, Toledo, Ohio 43615, United States
| | - Mohcen Shahbaznezhad
- Department of Electrical Engineering and
Computer Science, The University of Toledo, Toledo, Ohio 43615, United States
| | - Bilal Abdul Halim
- Department of Mechanical,
Industrial, and Manufacturing, The University
of Toledo, Toledo, Ohio 43615, United States
| | - Hossein Sojoudi
- Department of Mechanical,
Industrial, and Manufacturing, The University
of Toledo, Toledo, Ohio 43615, United States
| |
Collapse
|
11
|
|
12
|
Maffi J, Estenoz D. On the evolution of particle size distributions during the bulk synthesis of high-impact polystyrene using PBM: Towards morphology and phase inversion prediction. Chem Eng Sci 2022. [DOI: 10.1016/j.ces.2021.117027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
13
|
Issue Highlights. CAN J CHEM ENG 2020. [DOI: 10.1002/cjce.23788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|