1
|
Cui S, Wang R, Chen Q, Pugliese L, Wu S. Geobatteries in environmental biogeochemistry: Electron transfer and utilization. ENVIRONMENTAL SCIENCE AND ECOTECHNOLOGY 2024; 22:100446. [PMID: 39104555 PMCID: PMC11298864 DOI: 10.1016/j.ese.2024.100446] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 06/29/2024] [Accepted: 06/30/2024] [Indexed: 08/07/2024]
Abstract
The efficiency of direct electron flow from electron donors to electron acceptors in redox reactions is significantly influenced by the spatial separation of these components. Geobatteries, a class of redox-active substances naturally present in soil-water systems, act as electron reservoirs, reversibly donating, storing, and accepting electrons. This capability allows the temporal and spatial decoupling of redox half-reactions, providing a flexible electron transfer mechanism. In this review, we systematically examine the critical role of geobatteries in influencing electron transfer and utilization in environmental biogeochemical processes. Typical redox-active centers within geobatteries, such as quinone-like moieties, nitrogen- and sulfur-containing groups, and variable-valent metals, possess the potential to repeatedly charge and discharge. Various characterization techniques, ranging from qualitative methods like elemental analysis, imaging, and spectroscopy, to quantitative techniques such as chemical, spectroscopic, and electrochemical methods, have been developed to evaluate this reversible electron transfer capacity. Additionally, current research on the ecological and environmental significance of geobatteries extends beyond natural soil-water systems (e.g., soil carbon cycle) to engineered systems such as water treatment (e.g., nitrogen removal) and waste management (e.g., anaerobic digestion). Despite these advancements, challenges such as the complexity of environmental systems, difficulties in accurately quantifying electron exchange capacity, and scaling-up issues must be addressed to fully unlock their potential. This review underscores both the promise and challenges associated with geobatteries in responding to environmental issues, such as climate change and pollutant transformation.
Collapse
Affiliation(s)
- Shihao Cui
- Department of Agroecology, Aarhus University, Blichers Allé 20, 8830, Tjele, Denmark
| | - Rui Wang
- Department of Biological and Chemical Engineering, Aarhus University, Gustav Wieds Vej 10, 8000, Aarhus, Denmark
| | - Qing Chen
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China
| | - Lorenzo Pugliese
- Department of Agroecology, Aarhus University, Blichers Allé 20, 8830, Tjele, Denmark
| | - Shubiao Wu
- Department of Agroecology, Aarhus University, Blichers Allé 20, 8830, Tjele, Denmark
| |
Collapse
|
2
|
Guan W, Cheng W, Pei S, Chen X, Yuan Z, Lu C. Probing Coordination Number of Single-Atom Catalysts by d-Band Center-Regulated Luminescence. Angew Chem Int Ed Engl 2024; 63:e202401214. [PMID: 38393606 DOI: 10.1002/anie.202401214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 02/21/2024] [Accepted: 02/23/2024] [Indexed: 02/25/2024]
Abstract
It is essential to probe the coordination number (CN) because it is a crucial factor to ensure the catalytic capability of single-atom catalysts (SACs). Currently, synchrotron X-ray absorption spectroscopy (XAS) is widely used to measure the CN. However, the scarcity of synchrotron X-ray source and complicated data analysis restrict its wide applications in determining the CN of SACs. In this contribution, we have developed a d-band center-regulated acetone cataluminescence (CTL) probe for a rapid screening of the CN of Pt-SACs. It is disclosed that the CN-triggered CTL is attributed to the fact that the increased CN could induce the downward shift of d-band center position, which assists the acetone adsorption and promotes the subsequent catalytic reaction. In addition, the universality of the proposed acetone-CTL probe is verified by determining the CN of Fe-SACs. This work has opened a new avenue for exploring an alternative to synchrotron XAS for the determination of CN of SACs and even conventional metal catalysts through d-band center-regulated CTL.
Collapse
Affiliation(s)
- Weijiang Guan
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Weiwei Cheng
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Shuxin Pei
- Key Laboratory of Theoretical and Computational Photochemistry of Ministry of Education, Beijing Normal University, Beijing, 100875, China
| | - Xuebo Chen
- Key Laboratory of Theoretical and Computational Photochemistry of Ministry of Education, Beijing Normal University, Beijing, 100875, China
| | - Zhiqin Yuan
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Chao Lu
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| |
Collapse
|
3
|
Golosovsky IV, Kibalin IA, Gukasov A, Roca AG, López-Ortega A, Estrader M, Vasilakaki M, Trohidou KN, Hansen TC, Puente-Orench I, Lelièvre-Berna E, Nogués J. Elucidating Individual Magnetic Contributions in Bi-Magnetic Fe 3 O 4 /Mn 3 O 4 Core/Shell Nanoparticles by Polarized Powder Neutron Diffraction. SMALL METHODS 2023; 7:e2201725. [PMID: 37391272 DOI: 10.1002/smtd.202201725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 05/10/2023] [Indexed: 07/02/2023]
Abstract
Heterogeneous bi-magnetic nanostructured systems have had a sustained interest during the last decades owing to their unique magnetic properties and the wide range of derived potential applications. However, elucidating the details of their magnetic properties can be rather complex. Here, a comprehensive study of Fe3 O4 /Mn3 O4 core/shell nanoparticles using polarized neutron powder diffraction, which allows disentangling the magnetic contributions of each of the components, is presented. The results show that while at low fields the Fe3 O4 and Mn3 O4 magnetic moments averaged over the unit cell are antiferromagnetically coupled, at high fields, they orient parallel to each other. This magnetic reorientation of the Mn3 O4 shell moments is associated with a gradual evolution with the applied field of the local magnetic susceptibility from anisotropic to isotropic. Additionally, the magnetic coherence length of the Fe3 O4 cores shows some unusual field dependence due to the competition between the antiferromagnetic interface interaction and the Zeeman energies. The results demonstrate the great potential of the quantitative analysis of polarized neutron powder diffraction for the study of complex multiphase magnetic materials.
Collapse
Affiliation(s)
- I V Golosovsky
- National Research Center "Kurchatov Institute", B. P. Konstantinov Petersburg Nuclear Physics Institute, Gatchina, 188300, Russia
| | - I A Kibalin
- Laboratoire Léon Brillouin, CEA-CNRS, CE-Saclay, Gif-sur-Yvette, 91191, France
| | - A Gukasov
- Laboratoire Léon Brillouin, CEA-CNRS, CE-Saclay, Gif-sur-Yvette, 91191, France
| | - A G Roca
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, Bellaterra, Barcelona, 08193, Spain
| | - A López-Ortega
- Departamento de Ciencias, Universidad Pública de Navarra, Pamplona, 31006, Spain
- Institute for Advanced Materials and Mathematics INAMAT2, Universidad Pública de Navarra, Pamplona, 31006, Spain
| | - M Estrader
- Departament de Química Inorgànica i Orgànica, carrer Martí i Franqués 1-11, Universitat de Barcelona, Barcelona, 08028, Spain
- Institut de Nanociència i Nanotecnologia IN2UB, carrer Martí i Franqués 1-11, Universitat de Barcelona, Barcelona, 08028, Spain
| | - M Vasilakaki
- Institute of Nanoscience and Nanotechnology, NCSR "Demokritos", 153 10, Agia Paraskevi, Attiki, 15310, Greece
| | - K N Trohidou
- Institute of Nanoscience and Nanotechnology, NCSR "Demokritos", 153 10, Agia Paraskevi, Attiki, 15310, Greece
| | - T C Hansen
- Institut Laue Langevin, 71 avenue des Martyrs, Grenoble, 38000, France
| | - I Puente-Orench
- Institut Laue Langevin, 71 avenue des Martyrs, Grenoble, 38000, France
- Instituto de NanoCiencia y Materiales de Aragón, Zaragoza, 50009, Spain
| | - E Lelièvre-Berna
- Institut Laue Langevin, 71 avenue des Martyrs, Grenoble, 38000, France
| | - J Nogués
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, Bellaterra, Barcelona, 08193, Spain
- ICREA, Barcelona, 08010, Spain
| |
Collapse
|
4
|
Wareppam B, Kuzmann E, Garg VK, Singh LH. Mössbauer spectroscopic investigations on iron oxides and modified nanostructures: A review. JOURNAL OF MATERIALS RESEARCH 2022; 38:937-957. [PMID: 36059887 PMCID: PMC9423703 DOI: 10.1557/s43578-022-00665-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 07/15/2022] [Indexed: 06/15/2023]
Abstract
Pure and doped iron oxide and hydroxide nanoparticles are highly potential materials for biological, environment, energy and other technological applications. On demand of the applications, single phase as well as multiple phase of different polymorphs or composites of iron oxides with compatible materials for example, zeolite, SiO2, or Au are prepared. The properties of the as-synthesized nanoparticles are predominantly dictated by the local structure and the distribution of the cations. Mössbauer spectroscopy is a perfect and efficient characterization technique to investigate the local structure of the Mössbauer-active element such as Fe, Au, and Sn. In the present review, the local structure transformation on the optimization of the magnetite coexisted with iron hydroxides, spin dynamics of the bare, caped, core-shell and the composites of iron oxide nanoparticles (IONPs), dipole-dipole interactions and the diffusion of IONPs were discussed, based on the findings using Mössbauer spectroscopy.
Collapse
Affiliation(s)
- Boris Wareppam
- Department of Physics, National Institute of Technology Manipur, Langol, 795004 India
| | - Ernő Kuzmann
- Department of Analytical Chemistry, Institute of Chemistry, Eötvös Loránd University, Pázmány Péter Sétány 1/A, Budapest, 1117 Hungary
| | - Vijayendra K. Garg
- Institute of Physics, University of Brasília, Brasília, DF 70919-970 Brazil
| | - L. Herojit Singh
- Department of Physics, National Institute of Technology Manipur, Langol, 795004 India
| |
Collapse
|
5
|
Moon DH, Lee MS, Cho HG, Uhm YR. Response to comment on “Magnetic and chemical characterization of black pottery from Hanseong Baekje archaeological site, South Korea”. J Radioanal Nucl Chem 2022. [DOI: 10.1007/s10967-021-08182-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
6
|
Nayak PK. Comment on “Magnetic and chemical characterization of black pottery from Hanseong Baekje archaeological site, South Korea”. J Radioanal Nucl Chem 2022. [DOI: 10.1007/s10967-021-08180-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
7
|
Issue Highlights. CAN J CHEM ENG 2021. [DOI: 10.1002/cjce.23806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|