• Reference Citation Analysis
  • v
  • v
  • Find an Article
Find an Article PDF (4617274)   Today's Articles (4786)   Subscriber (49398)
For: Zuo YX, Stenby EH. Corresponding-states and parachor models for the calculation of interfacial tensions. CAN J CHEM ENG 1997. [DOI: 10.1002/cjce.5450750617] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Number Cited by Other Article(s)
1
Toutouni R, Kubelka J, Piri M. Quantitative Predictions and Experimental Validation of Liquid-Vapor Interfacial Tension in Binary and Ternary Mixtures of Alkanes Using Molecular Dynamics Simulations. J Phys Chem B 2023;127:396-406. [PMID: 36563326 DOI: 10.1021/acs.jpcb.2c07748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
2
Mulero A, Cachadiña I, Cardona L, Valderrama JO. Pressure–Surface Tension–Temperature Equation of State for n-Alkanes. Ind Eng Chem Res 2022;61:3457-3473. [PMID: 35300273 PMCID: PMC8919510 DOI: 10.1021/acs.iecr.1c04979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/31/2022] [Accepted: 02/11/2022] [Indexed: 12/03/2022]
3
Toutouni R, Kubelka J, Piri M. Molecular Dynamics Simulations of the Vapor-Liquid Equilibria in CO2/n-Pentane, Propane/n-Pentane, and Propane/n-Hexane Binary Mixtures. J Phys Chem B 2021;125:6658-6669. [PMID: 34125546 DOI: 10.1021/acs.jpcb.1c03673] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
4
Modeling of interfacial tension in binary mixtures of CH4, CO2, and N2 - alkanes using gene expression programming and equation of state. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.114454] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
5
Khosharay S, Feyzi P, Tourang S, Tajfar F. A model based on the equality of chemical potentials for describing the liquid-liquid interfaces of water-hydrocarbons up to high pressures. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.113931] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
6
Yang S, Tian J, Jiang H, Mulero A, Cachadiña I. Corresponding-States Model for the Correlation and Prediction of the Surface Tension of Silanes. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.0c00123] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
7
Zhang K, Jia N, Li S, Liu L. Rapid Determination of Interfacial Tensions in Nanopores: Experimental Nanofluidics and Theoretical Models. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019;35:8943-8949. [PMID: 31244243 DOI: 10.1021/acs.langmuir.9b01427] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
8
Zhang K, Jia N, Liu L. Semi‐analytical nanoscale‐extended surface tension correlation. AIChE J 2019. [DOI: 10.1002/aic.16622] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
9
Hosseini SM, Pierantozzi M. Molecular thermodynamic modeling of surface tensions of some fatty acid esters and biodiesels. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2019.02.105] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
10
Garrido JM, Polishuk I. Toward Development of a Universal CP-PC-SAFT-Based Modeling Framework for Predicting Thermophysical Properties at Reservoir Conditions: Inclusion of Surface Tensions. Ind Eng Chem Res 2018. [DOI: 10.1021/acs.iecr.8b02091] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
11
Goussard V, Duprat F, Gerbaud V, Ploix JL, Dreyfus G, Nardello-Rataj V, Aubry JM. Predicting the Surface Tension of Liquids: Comparison of Four Modeling Approaches and Application to Cosmetic Oils. J Chem Inf Model 2017;57:2986-2995. [DOI: 10.1021/acs.jcim.7b00512] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
12
Molecular simulation of the surface tension of 33 multi-site models for real fluids. J Mol Liq 2017. [DOI: 10.1016/j.molliq.2016.12.062] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
13
Liu Y, Li HA, Okuno R. Measurements and Modeling of Interfacial Tension for CO2/CH4/Brine Systems under Reservoir Conditions. Ind Eng Chem Res 2016. [DOI: 10.1021/acs.iecr.6b02446] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
14
Jiang W, Bian J, Liu Y, Gao S, Chen M, Du S. Modification of the CO2 surface tension calculation model under low-temperature and high-pressure condition. J DISPER SCI TECHNOL 2016. [DOI: 10.1080/01932691.2016.1188399] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
15
Garrido JM, Mejía A, Piñeiro MM, Blas FJ, Müller EA. Interfacial tensions of industrial fluids from a molecular‐based square gradient theory. AIChE J 2016. [DOI: 10.1002/aic.15190] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
16
Němec T. Prediction of surface tension of binary mixtures with the parachor method. EPJ WEB OF CONFERENCES 2015. [DOI: 10.1051/epjconf/20159202054] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]  Open
17
An improved prediction equation of refrigerants surface tension based on the principle of corresponding states. Chem Res Chin Univ 2014. [DOI: 10.1007/s40242-014-3487-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
18
Bagheri A, Rafati AA, Tajani AA, Borujeni ARA, Hajian A. Prediction of the Surface Tension, Surface Concentration and the Relative Gibbs Adsorption Isotherm of Non-ideal Binary Liquid Mixtures. J SOLUTION CHEM 2013. [DOI: 10.1007/s10953-013-0093-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
19
Neyt JC, Wender A, Lachet V, Ghoufi A, Malfreyt P. Molecular modeling of the liquid-vapor interfaces of a multi-component mixture: Prediction of the coexisting densities and surface tensions at different pressures and gas compositions. J Chem Phys 2013;139:024701. [DOI: 10.1063/1.4811679] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]  Open
20
Modeling interfacial tension of (CH4+N2)+H2O and (N2+CO2)+H2O systems using linear gradient theory. KOREAN J CHEM ENG 2013. [DOI: 10.1007/s11814-012-0187-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
21
Carreón-Calderón B. Theoretical study of vapor-liquid homogeneous nucleation using stability analysis of a macroscopic phase. J Chem Phys 2012;137:144104. [PMID: 23061836 DOI: 10.1063/1.4757384] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]  Open
22
Gharagheizi F, Eslamimanesh A, Sattari M, Mohammadi AH, Richon D. Development of corresponding states model for estimation of the surface tension of chemical compounds. AIChE J 2012. [DOI: 10.1002/aic.13824] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
23
Handling a very large data set for determination of surface tension of chemical compounds using Quantitative Structure–Property Relationship strategy. Chem Eng Sci 2011. [DOI: 10.1016/j.ces.2011.06.052] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
24
Müller EA, Mejía A. Comparison of united-atom potentials for the simulation of vapor-liquid equilibria and interfacial properties of long-chain n-alkanes up to n-C100. J Phys Chem B 2011;115:12822-34. [PMID: 21932822 DOI: 10.1021/jp203236q] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
25
Miqueu C, Míguez JM, Piñeiro MM, Lafitte T, Mendiboure B. Simultaneous Application of the Gradient Theory and Monte Carlo Molecular Simulation for the Investigation of Methane/Water Interfacial Properties. J Phys Chem B 2011;115:9618-25. [DOI: 10.1021/jp202276k] [Citation(s) in RCA: 96] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
26
Llovell F, Galindo A, Blas FJ, Jackson G. Classical density functional theory for the prediction of the surface tension and interfacial properties of fluids mixtures of chain molecules based on the statistical associating fluid theory for potentials of variable range. J Chem Phys 2010;133:024704. [DOI: 10.1063/1.3449143] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]  Open
27
Carreón-Calderón B, Soria A, Romero-Martínez A. Modified Rachford-Rice equations including interfacial contributions and their application to the nucleation process. AIChE J 2009. [DOI: 10.1002/aic.12103] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
28
Biscay F, Ghoufi A, Lachet V, Malfreyt P. Monte Carlo Simulations of the Pressure Dependence of the Water−Acid Gas Interfacial Tensions. J Phys Chem B 2009;113:14277-90. [DOI: 10.1021/jp906953a] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
29
Biscay F, Ghoufi A, Goujon F, Lachet V, Malfreyt P. Surface Tensions of Linear and Branched Alkanes from Monte Carlo Simulations Using the Anisotropic United Atom Model. J Phys Chem B 2008;112:13885-97. [DOI: 10.1021/jp806127j] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
30
Ghoufi A, Goujon F, Lachet V, Malfreyt P. Surface tension of water and acid gases from Monte Carlo simulations. J Chem Phys 2008;128:154716. [DOI: 10.1063/1.2904458] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]  Open
31
Miqueu C, Mendiboure B, Graciaa A, Lachaise J. Modeling of the Surface Tension of Multicomponent Mixtures with the Gradient Theory of Fluid Interfaces. Ind Eng Chem Res 2005. [DOI: 10.1021/ie049086l] [Citation(s) in RCA: 111] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
32
Castellanos AJ, Urbina-Villalba G, García-Sucre M. Interfacial Energy and the Law of Corresponding States. J Phys Chem B 2004. [DOI: 10.1021/jp0310246] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
33
Sun Y, Shekunov BY. Surface tension of ethanol in supercritical CO2. J Supercrit Fluids 2003. [DOI: 10.1016/s0896-8446(02)00184-5] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
PrevPage 1 of 1 1Next
© 2004-2024 Baishideng Publishing Group Inc. All rights reserved. 7041 Koll Center Parkway, Suite 160, Pleasanton, CA 94566, USA