Griffiths RL, Bunch J. A survey of useful salt additives in matrix-assisted laser desorption/ionization mass spectrometry and tandem mass spectrometry of lipids: introducing nitrates for improved analysis.
RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2012;
26:1557-1566. [PMID:
22638973 DOI:
10.1002/rcm.6258]
[Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
RATIONALE
Matrix-assisted laser desorption/ionization (MALDI) is a powerful technique for the direct analysis of lipids in complex mixtures and thin tissue sections, making it an extremely attractive method for profiling lipids in health and disease. Lipids are readily detected as [M+H](+), [M+Na](+) and [M+K](+) ions in positive ion MALDI mass spectrometry (MS) experiments. This not only decreases sensitivity, but can also lead to overlapping m/z values of the various adducts of different lipids. Additives can be used to promote formation of a particular adduct, improving sensitivity, reducing spectral complexity and enhancing structural characterization in collision-induced dissociation (CID) experiments.
METHODS
Li(+), Na(+), K(+), Cs(+) and NH(4)(+) cations were considered as a range of salt types (acetates, chlorides and nitrates) incorporated into DHB matrix solutions at concentrations between 5 and 80 mM. The study was extended to evaluate the effect of these additives on CID experiments of a lipid standard, after optimization of collision energy parameters. Experiments were performed on a hybrid quadrupole time-of-flight (QqTOF) instrument.
RESULTS
The systematic evaluation of new and existing additives in MALDI-MS and MS/MS of lipids demonstrated the importance of additive cation and anion choice and concentration for tailoring spectral results.
CONCLUSIONS
The recommended choice of additive depends on the desired outcomes of the experiment to be performed (MS or MS/MS). Nitrates are found to be particularly useful additives for lipid analysis.
Collapse