Liang A, Ouyang H, Jiang Z. Resonance scattering spectral detection of trace ATP based on label-free aptamer reaction and nanogold catalysis.
Analyst 2011;
136:4514-9. [PMID:
21912797 DOI:
10.1039/c1an15542c]
[Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Double-stranded DNA (dsDNA) cannot protect gold nanoparticles (AuNPs) in the presence of NaCl, and dsDNA interacted with adenosine triphosphate (ATP) to form stable G-quartet and a single-stranded DNA (DNA 2) that can protect AuNPs. The unprotected AuNPs were aggregated to AuNP aggregations (AuNPA) that exhibited a resonance scattering (RS) peak at 590 nm. The RS intensity at 590 nm decreased linearly when the ATP concentration increased in the range of 6.6-110 nM. The catalysis of AuNP-DNA 2 was stronger than that of the AuNPA on the glucose-Cu(II) particle reaction, and the product appeared as an RS peak at 620 nm. When the ATP concentration was increased, the AuNP-DNA 2 increased, and the RS intensity at 620 nm increased linearly. The increased RS intensity (ΔI(620 nm)) was linear to ATP concentration in the range of 2.2-220 nM, with a regression equation of ΔI(620 nm) = 0.709C + 7.7, and a detection limit of 0.5 nM. Hereby, a new RS method of ATP detection was set up with high sensitivity and selectivity.
Collapse