Kannasani RK, Peruri VVS, Battula SR. NaHSO4-SiO2 as an efficient and chemoselective catalyst, for the synthesis of acylal from aldehydes under, solvent-free conditions.
Chem Cent J 2012;
6:136. [PMID:
23148682 PMCID:
PMC3543185 DOI:
10.1186/1752-153x-6-136]
[Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2012] [Accepted: 09/07/2012] [Indexed: 11/27/2022] Open
Abstract
Background
Structurally diverse aldehydes are successfully converted into acylals (1,1-diacetates) with acetic anhydride using NaHSO4-SiO2 as a mild, convenient and inexpensive catalyst under solvent-free conditions. The noteworthy features of the present system are shorter reaction times, and mild and solvent-free conditions. Furthermore, it offers chemoselective protection of aldehydes.
Results
Both aromatic and aliphatic aldehydes reacts smoothly with acetic anhydride in presence of silica supported sodium hydrogen sulphate to afford the corresponding 1,1-diacetates in good to excellent yields. We studied competitive reactions for the acylation of aldehydes in the presence of ketones using silica supported sodium hydrogen sulphate as a catalyst. Using this catalytic system, the highly selective conversion of an aldehyde in the presence of ketone was observed.
Conclusions
NaHSO4-SiO2 is a chemoselective and highly efficient catalyst for acylal formation from aldehydes. The advantages of this methodology over the reported methods is the availability of the starting materials, simplicity of acylation procedure, a clean work-up, a short reaction time, high yields and reusability.
Collapse