1
|
Zhang C, She Y, Li T, Zhao F, Jin M, Guo Y, Zheng L, Wang S, Jin F, Shao H, Liu H, Wang J. A highly selective electrochemical sensor based on molecularly imprinted polypyrrole-modified gold electrode for the determination of glyphosate in cucumber and tap water. Anal Bioanal Chem 2017; 409:7133-7144. [PMID: 29018930 DOI: 10.1007/s00216-017-0671-5] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Revised: 09/14/2017] [Accepted: 09/21/2017] [Indexed: 01/05/2023]
Abstract
An electrochemical sensor based on molecularly imprinted polypyrrole (MIPPy) was developed for selective and sensitive detection of the herbicide glyphosate (Gly) in cucumber and tap water samples. The sensor was prepared via synthesis of molecularly imprinted polymers on a gold electrode in the presence of Gly as the template molecule and pyrrole as the functional monomer by cyclic voltammetry (CV). The sensor preparation conditions including the ratio of template to functional monomers, number of CV cycles in the electropolymerization process, the method of template removal, incubation time, and pH were optimized. Under the optimal experimental conditions, the DPV peak currents of hexacyanoferrate/hexacyanoferrite changed linearly with Gly concentration in the range from 5 to 800 ng mL-1, with a detection limit of 0.27 ng mL-1 (S/N = 3). The sensor was used to detect the concentration of Gly in cucumber and tap water samples, with recoveries ranging from 72.70 to 98.96%. The proposed sensor showed excellent selectivity, good stability and reversibility, and could detect the Gly in real samples rapidly and sensitively. Graphical abstract Schematic illustration of the experimental procedure to detect Gly using the MIPPy electrode.
Collapse
Affiliation(s)
- Chao Zhang
- Key Laboratory of Agro-product Quality and Food Safety, Ministry of Agriculture, Institute of Quality Standards & Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Yongxin She
- Key Laboratory of Agro-product Quality and Food Safety, Ministry of Agriculture, Institute of Quality Standards & Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| | - Tengfei Li
- Department of Food Science, College of Agriculture, Hebei University of Engineering, Handan, Hebei, 056021, China
| | - Fengnian Zhao
- Key Laboratory of Agro-product Quality and Food Safety, Ministry of Agriculture, Institute of Quality Standards & Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Maojun Jin
- Key Laboratory of Agro-product Quality and Food Safety, Ministry of Agriculture, Institute of Quality Standards & Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Yirong Guo
- College of Agriculture and Biology Technology, Zhejiang University, Zhejiang, Hangzhou, 31000, China
| | - Lufei Zheng
- Key Laboratory of Agro-product Quality and Food Safety, Ministry of Agriculture, Institute of Quality Standards & Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Shanshan Wang
- Key Laboratory of Agro-product Quality and Food Safety, Ministry of Agriculture, Institute of Quality Standards & Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Fen Jin
- Key Laboratory of Agro-product Quality and Food Safety, Ministry of Agriculture, Institute of Quality Standards & Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Hua Shao
- Key Laboratory of Agro-product Quality and Food Safety, Ministry of Agriculture, Institute of Quality Standards & Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Haijin Liu
- Tibet Testing Center of Quality and Safety for Agricultural and Animal Husbandry Products, Lhasa, Tibet, 850000, China
| | - Jing Wang
- Key Laboratory of Agro-product Quality and Food Safety, Ministry of Agriculture, Institute of Quality Standards & Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| |
Collapse
|