Moukha-chafiq O, Reynolds RC. Parallel solution-phase synthesis and general biological activity of a uridine antibiotic analog library.
ACS COMBINATORIAL SCIENCE 2014;
16:232-7. [PMID:
24661222 PMCID:
PMC4025591 DOI:
10.1021/co4001452]
[Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
![]()
A small library of ninety four uridine antibiotic analogs was synthesized,
under the Pilot Scale Library (PSL) Program of the NIH Roadmap initiative,
from amine 2 and carboxylic acids 33 and 77 in solution-phase fashion. Diverse aldehyde, sulfonyl chloride,
and carboxylic acid reactant sets were condensed to 2, leading after acid-mediated hydrolysis, to the targeted compounds 3–32 in good yields and high purity. Similarly,
treatment of 33 with diverse amines and sulfonamides
gave 34–75. The coupling of the amino
terminus of d-phenylalanine methyl ester to the free 5′-carboxylic
acid moiety of 33 followed by sodium hydroxide treatment
led to carboxylic acid analog 77. Hydrolysis of this
material gave analog 78. The intermediate 77 served as the precursor for the preparation of novel dipeptidyl
uridine analogs 79–99 through peptide
coupling reactions to diverse amine reactants. None of the described
compounds show significant anticancer or antimalarial acivity. A number
of samples exhibited a variety of promising inhibitory, agonist, antagonist,
or activator properties with enzymes and receptors in primary screens
supplied and reported through the NIH MLPCN program.
Collapse