1
|
Liu X, Hee S, Sapir NG, Li A, Farkruzzaman S, Liu J, Chen Y. n-Bu 4NI/K 2S 2O 8-MEDIATED C-N COUPLING BETWEEN ALDEHYDES AND AMIDES. European J Org Chem 2024; 27:e202400067. [PMID: 39051029 PMCID: PMC11268833 DOI: 10.1002/ejoc.202400067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Indexed: 07/27/2024]
Abstract
n-Bu4NI/K2S2O8 mediated C-N coupling between aldehydes and amides is reported. A strong electronic effect is observed on the aromatic aldehyde substrates. The transformylation from aldehyde to amide takes place exclusively when an aromatic aldehyde bears electron-donating groups at either the ortho or para position of the formyl group, while the cross-dehydrogenative coupling dominates in the absence of these groups. Both the density functional theory (DFT) thermochemistry calculations and experimental data support the proposed single electron transfer mechanism with the formation of an acyl radical intermediate in the cross-dehydrogenative coupling. The n-Bu4NI/K2S2O8 mediated oxidative cyclization between 2-aminobenzamide and aldehydes is also reported, with four quinazolin-4(3H)-ones prepared in 65-99% yields.
Collapse
Affiliation(s)
- Xiaochen Liu
- Department of Chemistry and Biochemistry, Queens College of the City University of New York, 65-30 Kissena Blvd., Queens, New York, 11367, United States
- Ph.D. Program in Chemistry, The Graduate Center of the City University of New York, 365 Fifth Ave., New York, New York 10016, United States
| | - Samual Hee
- Department of Chemistry and Biochemistry, Queens College of the City University of New York, 65-30 Kissena Blvd., Queens, New York, 11367, United States
- Ph.D. Program in Chemistry, The Graduate Center of the City University of New York, 365 Fifth Ave., New York, New York 10016, United States
| | - Netanel G Sapir
- Department of Chemistry and Biochemistry, Queens College of the City University of New York, 65-30 Kissena Blvd., Queens, New York, 11367, United States
| | - Alvin Li
- Department of Chemistry and Biochemistry, Queens College of the City University of New York, 65-30 Kissena Blvd., Queens, New York, 11367, United States
| | - Syed Farkruzzaman
- Department of Chemistry and Biochemistry, Queens College of the City University of New York, 65-30 Kissena Blvd., Queens, New York, 11367, United States
| | - Jianbo Liu
- Department of Chemistry and Biochemistry, Queens College of the City University of New York, 65-30 Kissena Blvd., Queens, New York, 11367, United States
- Ph.D. Program in Chemistry, The Graduate Center of the City University of New York, 365 Fifth Ave., New York, New York 10016, United States
| | - Yu Chen
- Department of Chemistry and Biochemistry, Queens College of the City University of New York, 65-30 Kissena Blvd., Queens, New York, 11367, United States
- Ph.D. Program in Chemistry, The Graduate Center of the City University of New York, 365 Fifth Ave., New York, New York 10016, United States
| |
Collapse
|
2
|
Liu SH, Dong ZC, Zang ZL, Zhou CH, Cai GX. Selective α-oxidation of amides via visible-light-driven iron catalysis. Org Biomol Chem 2024; 22:1205-1212. [PMID: 38224270 DOI: 10.1039/d3ob01984e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2024]
Abstract
Hydroxyl radicals (˙OH) as one of the highly reactive species can react unselectively with a wide range of chemicals. The ˙OH radicals are typically generated under harsh conditions. Herein, we report hydroxyl radical-induced selective N-α C(sp3)-H bond oxidation of amides under greener and mild conditions via an Fe(NO3)3·9H2O catalyst inner sphere pathway upon irradiation with a 30 W blue LED light strip (λ = 455 nm) using NaBrO3 as the oxidant. This protocol exhibited high chemoselectivity and excellent functional group tolerance. A preliminary mechanism investigation demonstrated that the iron catalyst afforded hydroxyl radicals via the visible-light-induced homolysis (VLIH) of iron complexes followed by a hydrogen atom transfer (HAT) process to realize this transformation.
Collapse
Affiliation(s)
- Shu-Hong Liu
- Institute of Bioorganic & Medicinal Chemistry, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China.
| | - Zhi-Chao Dong
- Institute of Bioorganic & Medicinal Chemistry, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China.
| | - Zhong-Lin Zang
- Institute of Bioorganic & Medicinal Chemistry, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China.
| | - Cheng-He Zhou
- Institute of Bioorganic & Medicinal Chemistry, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China.
| | - Gui-Xin Cai
- Institute of Bioorganic & Medicinal Chemistry, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China.
| |
Collapse
|
3
|
Bai F, Wang N, Bai Y, Ma X, Gu C, Dai B, Chen J. NHPI-Mediated Electrochemical α-Oxygenation of Amides to Benzimides. J Org Chem 2023. [PMID: 36866582 DOI: 10.1021/acs.joc.2c02700] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
This report describes a mild electrochemical α-oxygenation of a wide range of linear and cyclic benzamides mediated by N-hydroxyphthalimide (NHPI) in an undivided cell using O2 as the oxygen source and 2,4,6-trimethylpyridine perchlorate as an electrolyte. The radical scavenger experiment and the 18O labeling experiment were carried out, which indicated the involvement of a radical pathway and suggested O2 as an oxygen source in the imides, respectively.
Collapse
Affiliation(s)
- Fang Bai
- State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, School of Chemistry and Chemical Engineering, Shihezi University, Xinjiang Uygur Autonomous Region 832000, China
| | - Ning Wang
- State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, School of Chemistry and Chemical Engineering, Shihezi University, Xinjiang Uygur Autonomous Region 832000, China
| | - Yinshan Bai
- State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, School of Chemistry and Chemical Engineering, Shihezi University, Xinjiang Uygur Autonomous Region 832000, China
| | - Xiaowei Ma
- State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, School of Chemistry and Chemical Engineering, Shihezi University, Xinjiang Uygur Autonomous Region 832000, China
| | - Chengzhi Gu
- State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, School of Chemistry and Chemical Engineering, Shihezi University, Xinjiang Uygur Autonomous Region 832000, China
| | - Bin Dai
- State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, School of Chemistry and Chemical Engineering, Shihezi University, Xinjiang Uygur Autonomous Region 832000, China
| | - Jianpeng Chen
- Hami Shuoyuan Chemical Co., Ltd, Xinjiang Uygur Autonomous Region 832000, China
| |
Collapse
|
4
|
Sivaraj C, Gandhi T. Solvent-controlled amidation of acid chlorides at room temperature: new route to access aromatic primary amides and imides amenable for late-stage functionalization †. RSC Adv 2023; 13:9231-9236. [PMID: 36959886 PMCID: PMC10028618 DOI: 10.1039/d3ra00403a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 03/06/2023] [Indexed: 03/24/2023] Open
Abstract
Herein, we report a solvent-controlled highly selective amidation and imidation of aroyl chlorides using an alkali-metal silyl-amide reagent (LiHMDS), which serves as a nitrogen source at room temperature. A unique feature of this method lies in the sequential silyl amidation of aryol chlorides and nitrogen–silicon bond cleavage of the corresponding N,N-bis(trimethylsilyl)benzamide in a one-pot method in a very short reaction time. This effective strategy was extended to late-stage functionalization. Herein, we report a solvent-controlled highly selective amidation and imidation of aroyl chlorides using an alkali-metal silyl-amide reagent (LiHMDS), which serves as a nitrogen source at room temperature.![]()
Collapse
Affiliation(s)
- Chandrasekaran Sivaraj
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of TechnologyVellore 632014Tamil NaduIndia
| | - Thirumanavelan Gandhi
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of TechnologyVellore 632014Tamil NaduIndia
| |
Collapse
|
5
|
Huo HF, Liu D, Bao A, Muschin T, Bai C, Bao YS. Mesoporous Carbon-Supported Pd Nanoparticles in the Metallic State-Catalyzed Acylation of Amides with Aryl Esters via C-O Activation. ACS OMEGA 2022; 7:12779-12786. [PMID: 35474796 PMCID: PMC9026098 DOI: 10.1021/acsomega.1c07342] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 03/24/2022] [Indexed: 06/14/2023]
Abstract
Carbon, an abundant, inexpensive, and nonmetallic material, is an inimitable support in heterogeneous catalysis, and variable carbonaceous materials have been utilized to support metal nanoparticle catalysts. We developed an efficient and stable heterogeneous catalyst with highly dispersed metallic palladium nanoparticles embedded in an ordered pore channel of mesoporous carbon and first applied the catalyst to construct imides from amides using aryl esters as an acylation reagent via C-O activation. The catalyst represents excellent catalytic performance and could be reused and recycled five times without any significant decrease in activity. The heterogeneous nature of metallic state palladium was proven to be the active center in the acylation reaction.
Collapse
|
6
|
Makhal PN, Dannarm SR, Shaikh AS, Sonti R, Kaki VR. TBHP‐Mediated Selenocyclization of
N
‐Allylbenzamides/Benzthioamides
via In‐Situ
Generation of “PhSeOH” Species**. ChemistrySelect 2022. [DOI: 10.1002/slct.202200933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Priyanka N. Makhal
- Department of Medicinal Chemistry National Institute of Pharmaceutical Education and Research (NIPER) Hyderabad 500037 India
| | - Srinivas Reddy Dannarm
- Department of Pharmaceutical Analysis National Institute of Pharmaceutical Education and Research (NIPER) Hyderabad 500037 India
| | - Arbaz Sujat Shaikh
- Department of Medicinal Chemistry National Institute of Pharmaceutical Education and Research (NIPER) Hyderabad 500037 India
| | - Rajesh Sonti
- Department of Pharmaceutical Analysis National Institute of Pharmaceutical Education and Research (NIPER) Hyderabad 500037 India
| | - Venkata Rao Kaki
- Department of Medicinal Chemistry National Institute of Pharmaceutical Education and Research (NIPER) Hyderabad 500037 India
| |
Collapse
|
7
|
El-Gamil DS, ElHady AK, Chen PJ, Hwang TL, Abadi AH, Abdel-Halim M, Engel M. Development of novel conformationally restricted selective Clk1/4 inhibitors through creating an intramolecular hydrogen bond involving an imide linker. Eur J Med Chem 2022; 238:114411. [DOI: 10.1016/j.ejmech.2022.114411] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/20/2022] [Accepted: 04/21/2022] [Indexed: 11/29/2022]
|
8
|
Neerathilingam N, Anandhan R. Metal-free photoredox-catalyzed direct α-oxygenation of N, N-dibenzylanilines to imides under visible light. RSC Adv 2022; 12:8368-8373. [PMID: 35424823 PMCID: PMC8984950 DOI: 10.1039/d2ra00585a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 02/12/2022] [Indexed: 11/21/2022] Open
Abstract
An efficient synthesis of imides using metal-free photoredox-catalyzed direct α-oxygenation of N,N'-disubstituted anilines in the presence of 9-mesityl-10-methylacridinium [Acr+-Mes]BF4 as a photoredox catalyst and molecular oxygen as a green oxidant under visible light was developed. This photochemical approach offered operational simplicity, high atom economy with a low E-factor, and functional group tolerance under mild reaction conditions. Control and quenching experiments confirmed the occurrence of a radical pathway and superoxide radical anion α-oxygenation reactions, and also provided strong evidence for the reductive quenching of [Acr+-Mes]BF4 based on a Stern-Volmer plot, which led to the proposed mechanism of this reaction.
Collapse
Affiliation(s)
| | - Ramasamy Anandhan
- Department of Organic Chemistry, University of Madras Chennai 600025 India
| |
Collapse
|
9
|
Lian P, Li R, Wang L, Wan X, Xiang Z, Wan X. Photoredox aerobic oxidation of unreactive amine derivatives through LMCT excitation of copper dichloride. Org Chem Front 2022. [DOI: 10.1039/d2qo01032a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Taking advantage of the chlorine radical as a HAT catalyst, a versatile oxidation system for unreactive amines has been well established.
Collapse
Affiliation(s)
- Pengcheng Lian
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Ruyi Li
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Lili Wang
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Xiao Wan
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Zixin Xiang
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Xiaobing Wan
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| |
Collapse
|
10
|
Kuai CS, Wang LC, Xu JX, Wu XF. Palladium-Catalyzed Direct Dicarbonylation of Amines with Ethylene to Imides. Org Lett 2021; 24:451-456. [PMID: 34931845 DOI: 10.1021/acs.orglett.1c04142] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The selective and effective conversion of low-cost and simple bulk chemicals into high value-added products through catalytic strategy has a wide range of practical significance. Here, a palladium-catalyzed method for the direct and efficient dicarbonylation of amines with basic industrial feedstock ethylene to imide has been developed. Moderate to excellent yields of the desired imides can be produced from readily available amines in a straightforward manner.
Collapse
Affiliation(s)
- Chang-Sheng Kuai
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 116023 Dalian, Liaoning, China
| | - Le-Cheng Wang
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 116023 Dalian, Liaoning, China
| | - Jian-Xing Xu
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 116023 Dalian, Liaoning, China
| | - Xiao-Feng Wu
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 116023 Dalian, Liaoning, China.,Leibniz-Institut für Katalyse e. V., Albert-Einstein-Straβe 29a, 18059 Rostock, Germany
| |
Collapse
|
11
|
Yang D, Zhou GZ, Zhang LL, Liu H. Co-Catalysis for Hydroamidocarbonylation of Alkynes with Amides over a Bifunctional Ligand-Based Pd Catalyst. Chem Asian J 2021; 16:2113-2117. [PMID: 34121355 DOI: 10.1002/asia.202100551] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Revised: 06/10/2021] [Indexed: 11/06/2022]
Abstract
The hydroamidocarbonylation of alkynes with amides allows for the synthesis of α,β-unsaturated imides with the advantage of 100% atomic economy. Herein, the bifunctional ligand (L1) containing a sulfonic acid group (-SO3 H) and phosphino-fragment enable the Pd catalyst to accomplish the hydroamidocarbonylation of alkynes with amides. It was found that, due to an intramolecular synergetic effect, the L1-based Pd-catalyst exhibited much higher activity than the individual mechanical mixtures of Xantphos-based Pd-complex and MeSO3 H. The formation and stability of Pd-H species were promoted by the presence of L1, which was verified by in situ high-pressure FT-IR analysis. Under the optimized conditions, the target products of the branched imides were obtained with yields in the range of 46-87% over the L1-based Pd-catalyst. Advantageously, as an ionic ligand, the L1-based Pd-catalyst could be recycled for 4 runs in the ionic liquid of [Bmim]NTf2 without any obvious activity loss and detectable metal leaching.
Collapse
Affiliation(s)
- Da Yang
- College of Science, China University of Petroleum, 66 West Changjiang Road, 266580, Qingdao, P. R. China
| | - Guang-Zhao Zhou
- College of Science, China University of Petroleum, 66 West Changjiang Road, 266580, Qingdao, P. R. China
| | - Long-Li Zhang
- College of Science, China University of Petroleum, 66 West Changjiang Road, 266580, Qingdao, P. R. China
| | - Huan Liu
- College of Science, China University of Petroleum, 66 West Changjiang Road, 266580, Qingdao, P. R. China
| |
Collapse
|
12
|
Li J, Yao J, Chen L, Zou D, Walsh PJ, Liang G. Chemoselective acylation of N-acylglutarimides with N-acylpyrroles and aryl esters under transition-metal-free conditions. Org Chem Front 2021. [DOI: 10.1039/d1qo00992c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The imide moiety is a well-known structural motif in bioactive compounds and a useful building block in a variety of processes.
Collapse
Affiliation(s)
- Jie Li
- School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou, Zhejiang 311399, China
- Department of Pharmacy, School of Medicine, Zhejiang University City College, No. 48, Huzhou Road, Hangzhou 310015, P. R. China
| | - Jiaqi Yao
- School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou, Zhejiang 311399, China
- Department of Pharmacy, School of Medicine, Zhejiang University City College, No. 48, Huzhou Road, Hangzhou 310015, P. R. China
| | - Lingfeng Chen
- School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou, Zhejiang 311399, China
| | - Dong Zou
- Department of Pharmacy, School of Medicine, Zhejiang University City College, No. 48, Huzhou Road, Hangzhou 310015, P. R. China
| | - Patrick J. Walsh
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania 19104-6323, USA
| | - Guang Liang
- School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou, Zhejiang 311399, China
| |
Collapse
|
13
|
Peng Y, Feng CT, Li YQ, Chen FX, Xu K. Exploring the ring-opening reactions of imidazo[1,5-a]quinolines for the synthesis of imides under photochemical conditions. Org Biomol Chem 2019; 17:6570-6573. [PMID: 31243406 DOI: 10.1039/c9ob01227c] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The ring-opening reaction of imidazo[1,5-a]quinolines under photoredox conditions has been described. With Eosin Y as the organophotoredox catalyst, synthetically useful and medicinally important imides were obtained in moderate to excellent yields under mild reaction conditions.
Collapse
Affiliation(s)
- Ya Peng
- School of Chemical Engineering, Anhui University of Science and Technology, Huainan, Anhui 232001, China.
| | - Cheng-Tao Feng
- School of Chemical Engineering, Anhui University of Science and Technology, Huainan, Anhui 232001, China.
| | - Yu-Qing Li
- School of Chemical Engineering, Anhui University of Science and Technology, Huainan, Anhui 232001, China.
| | - Feng-Xiang Chen
- School of Chemical Engineering, Anhui University of Science and Technology, Huainan, Anhui 232001, China.
| | - Kun Xu
- Engineering Technology Research Center of Henan Province for Photo- and Electrochemical Catalysis, School of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang, Henan 473061, China
| |
Collapse
|
14
|
Ranjith J, Krishna PR. Copper-Catalyzed Oxidative C-H Bond Functionalization of N-Allylbenzamide for Regioselective C-N and C-O Bond Formation. Chem Asian J 2019; 14:1448-1451. [PMID: 30859739 DOI: 10.1002/asia.201900192] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 03/11/2019] [Indexed: 01/10/2023]
Abstract
Copper-catalyzed oxidative couplings of N-allylbenzamides for C-N and C-O bond formations have been developed through C-H bond functionalization. To demonstrate the utility of this approach, it was applied to the synthesis of β-aminoimides and imides. To the best of our knowledge, these are the first examples in which different classes of N-containing compounds have been directly prepared from the readily available N-allylbenzamides using an inexpensive catalyst/oxidant/base (CuSO4 /TBHP/Cs2 CO3 ) system.
Collapse
Affiliation(s)
- Jala Ranjith
- Organic Synthesis and Process Chemistry Division, CSIR-Indian Institute of Chemical Technology, Hyderabad, 500007, India
| | - Palakodety Radha Krishna
- Organic Synthesis and Process Chemistry Division, CSIR-Indian Institute of Chemical Technology, Hyderabad, 500007, India
| |
Collapse
|
15
|
Dahiya A, Ali W, Alam T, Patel BK. A cascade synthesis of S-allyl benzoylcarbamothioates via Mumm-type rearrangement. Org Biomol Chem 2018; 16:7787-7791. [PMID: 30324952 DOI: 10.1039/c8ob02293c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A catalyst and solvent free synthesis of S-allyl benzoylcarbamothioates has been achieved from the in situ generated benzoylcarbonimidothioates obtained by reacting MBH alcohols with aroyl isothiocyanates. An intramolecular thia-Michael addition of the in situ generated adduct triggers a Mumm-type rearrangement leading to a stereoselective synthesis of highly functionalised S-allyl benzoylcarbamothioates.
Collapse
Affiliation(s)
- Anjali Dahiya
- Department of Chemistry, Indian Institute of Technology Guwahati, 781 039, Assam, India.
| | | | | | | |
Collapse
|
16
|
Biswas S, Khanna HS, Nizami QA, Caldwell DR, Cavanaugh KT, Howell AR, Raman S, Suib SL, Nandi P. Heterogeneous Catalytic Oxidation of Amides to Imides by Manganese Oxides. Sci Rep 2018; 8:13649. [PMID: 30206248 PMCID: PMC6134084 DOI: 10.1038/s41598-018-31729-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Accepted: 08/23/2018] [Indexed: 11/23/2022] Open
Abstract
Herein, we report a one-step peroxide mediated heterogeneous catalytic oxidation of amides to imides utilizing a series of manganese oxides. Among them, Cs/Mn2O3 was found to be the most active catalyst for the selective partial oxidation of N-benzylbenzamide to diphenyl imide. We have been able to apply an optimized oxidation method to other aromatic substrates. The feasibility of using air as an oxidant, the heterogeneous nature, inexpensive catalytic materials, respectable turnover numbers, and chemoselectivity to imides make this methodology an attractive choice for functional group transformations of amides to imides.
Collapse
Affiliation(s)
- Sourav Biswas
- Department of Chemistry, University of Connecticut, Storrs, CT, 06269, USA
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, WI, 53706, USA
| | - Harshul S Khanna
- Institute of Materials Science, University of Connecticut, Storrs, CT, 06269, USA
| | - Quddus A Nizami
- Corporate Strategic Research, ExxonMobil Research and Engineering Company, 1545 US 22 East, Annandale, NJ, 08801, USA
| | - Donald R Caldwell
- Department of Chemistry, University of Connecticut, Storrs, CT, 06269, USA
| | | | - Amy R Howell
- Department of Chemistry, University of Connecticut, Storrs, CT, 06269, USA
| | - Sumathy Raman
- Corporate Strategic Research, ExxonMobil Research and Engineering Company, 1545 US 22 East, Annandale, NJ, 08801, USA
| | - Steven L Suib
- Department of Chemistry, University of Connecticut, Storrs, CT, 06269, USA.
- Institute of Materials Science, University of Connecticut, Storrs, CT, 06269, USA.
| | - Partha Nandi
- Corporate Strategic Research, ExxonMobil Research and Engineering Company, 1545 US 22 East, Annandale, NJ, 08801, USA.
| |
Collapse
|
17
|
Digwal CS, Yadav U, Ramya PVS, Sana S, Swain B, Kamal A. Vanadium-Catalyzed Oxidative C(CO)–C(CO) Bond Cleavage for C–N Bond Formation: One-Pot Domino Transformation of 1,2-Diketones and Amidines into Imides and Amides. J Org Chem 2017; 82:7332-7345. [DOI: 10.1021/acs.joc.7b00950] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Chander Singh Digwal
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad 500037, India
| | - Upasana Yadav
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad 500037, India
| | - P. V. Sri Ramya
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad 500037, India
| | - Sravani Sana
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad 500037, India
| | - Baijayantimala Swain
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad 500037, India
| | - Ahmed Kamal
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad 500037, India
| |
Collapse
|
18
|
Yakushchenko IK, Korchagin DV, Chernyak AV, Chapyshev SV. Synthesis and structure of 3,5-dinitro-N-(3,5-dinitrobenzoyl)benzamide. MENDELEEV COMMUNICATIONS 2016. [DOI: 10.1016/j.mencom.2016.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
19
|
Li H, Fang X, Jackstell R, Neumann H, Beller M. Palladium-catalysed hydroamidocarbonylation of 1,3-dienes. Chem Commun (Camb) 2016; 52:7142-5. [PMID: 27169986 DOI: 10.1039/c6cc03017c] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Herein, we report our recent result on the development of the selective catalytic method towards the synthesis of β,γ-unsaturated imides via Pd-catalysed hydroamidocarbonylation of conjugated dienes. Note that this reaction proceeds under acid additive free conditions. Various dienes, including those of high industrial value (e.g. isoprene, 1,3-butadiene), are shown to be compatible with our established method (28 examples, 40-99% yield), which leads to the corresponding β,γ-unsaturated imides in a highly efficient and atom-economic fashion.
Collapse
Affiliation(s)
- Haoquan Li
- Leibniz-Institut für Katalyse e. V. an der Universität Rostock, Albert-Einstein-Str. 29a, 18059 Rostock, Germany.
| | | | | | | | | |
Collapse
|