An X, Lu W, Zhu J, Pan X, Zhu X. Selenol-Based Nucleophilic Reaction for the Preparation of Reactive Oxygen Species-Responsive Amphiphilic Diblock Copolymers.
Polymers (Basel) 2019;
11:E827. [PMID:
31071937 PMCID:
PMC6572405 DOI:
10.3390/polym11050827]
[Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 04/29/2019] [Accepted: 05/05/2019] [Indexed: 01/28/2023] Open
Abstract
Selenide-containing amphiphilic copolymers have shown significant potential for application in drug release systems. Herein, we present a methodology for the design of a reactive oxygen species-responsive amphiphilic diblock selenide-labeled copolymer. This copolymer with controlled molecular weight and narrow molecular weight distribution was prepared by sequential organoselenium-mediated reversible addition fragmentation chain transfer (Se-RAFT) polymerization and selenol-based nucleophilic reaction. Nuclear magnetic resonance (NMR) and matrix-assisted laser desorption/ionization time-to-flight (MALDI-TOF) techniques were used to characterize its structure. Its corresponding nanomicelles successfully formed through self-assembly from the copolymer itself. Such nanomicelles could rapidly disassemble under oxidative conditions due to the fragmentation of the Se-C bond. Therefore, this type of nanomicelle based on selenide-labeled amphiphilic copolymers potentially provides a new platform for drug delivery.
Collapse