1
|
Sobhanan J, Rival JV, Anas A, Sidharth Shibu E, Takano Y, Biju V. Luminescent Quantum Dots: Synthesis, Optical Properties, Bioimaging and Toxicity. Adv Drug Deliv Rev 2023; 197:114830. [PMID: 37086917 DOI: 10.1016/j.addr.2023.114830] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 03/26/2023] [Accepted: 04/14/2023] [Indexed: 04/24/2023]
Abstract
Luminescent nanomaterials such as semiconductor nanocrystals (NCs) and quantum dots (QDs) attract much attention to optical detectors, LEDs, photovoltaics, displays, biosensing, and bioimaging. These materials include metal chalcogenide QDs and metal halide perovskite NCs. Since the introduction of cadmium chalcogenide QDs to biolabeling and bioimaging, various metal nanoparticles (NPs), atomically precise metal nanoclusters, carbon QDs, graphene QDs, silicon QDs, and other chalcogenide QDs have been infiltrating the nano-bio interface as imaging and therapeutic agents. Nanobioconjugates prepared from luminescent QDs form a new class of imaging probes for cellular and in vivo imaging with single-molecule, super-resolution, and 3D resolutions. Surface modified and bioconjugated core-only and core-shell QDs of metal chalcogenides (MX; M = Cd/Pb/Hg/Ag, and X = S/Se/Te,), binary metal chalcogenides (MInX2; M = Cu/Ag, and X = S/Se/Te), indium compounds (InAs and InP), metal NPs (Ag, Au, and Pt), pure or mixed precision nanoclusters (Ag, Au, Pt), carbon nanomaterials (graphene QDs, graphene nanosheets, carbon NPs, and nanodiamond), silica NPs, silicon QDs, etc. have become prevalent in biosensing, bioimaging, and phototherapy. While heavy metal-based QDs are limited to in vitro bioanalysis or clinical testing due to their potential metal ion-induced toxicity, carbon (nanodiamond and graphene) and silicon QDs, gold and silica nanoparticles, and metal nanoclusters continue their in vivo voyage towards clinical imaging and therapeutic applications. This review summarizes the synthesis, chemical modifications, optical properties, and bioimaging applications of semiconductor QDs with particular references to metal chalcogenide QDs and bimetallic chalcogenide QDs. Also, this review highlights the toxicity and pharmacokinetics of QD bioconjugates.
Collapse
Affiliation(s)
- Jeladhara Sobhanan
- Graduate School of Environmental Science, Hokkaido University, N10 W5, Sapporo, Hokkaido 060-0810, Japan; Center for Adapting Flaws into Features, Department of Chemistry, Rice University, 6100 Main St., Houston, TX 77005, USA
| | - Jose V Rival
- Smart Materials Lab, Department of Nanoscience and Technology, University of Calicut, Kerala, India
| | - Abdulaziz Anas
- CSIR-National Institute of Oceanography, Regional Centre Kochi, Kerala 682 018, India.
| | | | - Yuta Takano
- Graduate School of Environmental Science, Hokkaido University, N10 W5, Sapporo, Hokkaido 060-0810, Japan; Research Institute for Electronic Science, Hokkaido University, Sapporo 001-0020, Japan
| | - Vasudevanpillai Biju
- Graduate School of Environmental Science, Hokkaido University, N10 W5, Sapporo, Hokkaido 060-0810, Japan; Research Institute for Electronic Science, Hokkaido University, Sapporo 001-0020, Japan.
| |
Collapse
|
2
|
Guan X, Zhang L, Lai S, Zhang J, Wei J, Wang K, Zhang W, Li C, Tong J, Lei Z. Green synthesis of glyco-CuInS 2 QDs with visible/NIR dual emission for 3D multicellular tumor spheroid and in vivo imaging. J Nanobiotechnology 2023; 21:118. [PMID: 37005641 PMCID: PMC10067196 DOI: 10.1186/s12951-023-01859-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 03/15/2023] [Indexed: 04/04/2023] Open
Abstract
Glyco-quantum dots (glyco-QDs) have attracted significant interest in bioimaging applications, notably in cancer imaging, because they effectively combine the glycocluster effect with the exceptional optical properties of QDs. The key challenge now lies in how to eliminate the high heavy metal toxicity originating from traditional toxic Cd-based QDs for in vivo bioimaging. Herein, we report an eco-friendly pathway to prepare nontoxic Cd-free glyco-QDs in water by the "direct" reaction of thiol-ending monosaccharides with metal salts precursors. The formation of glyco-CuInS2 QDs could be explained by a nucleation-growth mechanism following the LaMer model. As-prepared four glyco-CuInS2 QDs were water-soluble, monodispersed, spherical in shape and exhibited size range of 3.0-4.0 nm. They exhibited well-separated dual emission in the visible region (500-590 nm) and near-infrared range (~ 827 nm), which may be attributable to visible excitonic emission and near-infrared surface defect emission. Meanwhile, the cell imaging displayed the reversibly distinct dual-color (green and red) fluorescence in tumor cells (HeLa, A549, MKN-45) and excellent membrane-targeting properties of glyco-CuInS2 QDs based on their good biorecognition ability. Importantly, these QDs succeed in penetrating uniformly into the interior (the necrotic zone) of 3D multicellular tumor spheroids (MCTS) due to their high negative charge (zeta potential values ranging from - 23.9 to - 30.1 mV), which overcame the problem of poor penetration depth of existing QDs in in vitro spheroid models. So, confocal analysis confirmed their excellent ability to penetrate and label tumors. Thus, the successful application in in vivo bioimaging of these glyco-QDs verified that this design strategy is an effective, low cost and simple procedure for developing green nanoparticles as cheap and promising fluorescent bioprobes.
Collapse
Affiliation(s)
- Xiaolin Guan
- Key Laboratory of Eco-Environment-Related Polymer Materials Ministry of Education, Key Laboratory of Polymer Materials Ministry of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, 730070, Gansu, People's Republic of China.
| | - Liyuan Zhang
- Key Laboratory of Eco-Environment-Related Polymer Materials Ministry of Education, Key Laboratory of Polymer Materials Ministry of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, 730070, Gansu, People's Republic of China
| | - Shoujun Lai
- College of Chemical Engineering, Lanzhou University of Arts and Science, Lanzhou, 730000, Gansu, People's Republic of China.
| | - Jiaming Zhang
- Key Laboratory of Eco-Environment-Related Polymer Materials Ministry of Education, Key Laboratory of Polymer Materials Ministry of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, 730070, Gansu, People's Republic of China
| | - Jingyu Wei
- Key Laboratory of Eco-Environment-Related Polymer Materials Ministry of Education, Key Laboratory of Polymer Materials Ministry of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, 730070, Gansu, People's Republic of China
| | - Kang Wang
- Key Laboratory of Eco-Environment-Related Polymer Materials Ministry of Education, Key Laboratory of Polymer Materials Ministry of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, 730070, Gansu, People's Republic of China
| | - Wentao Zhang
- Key Laboratory of Eco-Environment-Related Polymer Materials Ministry of Education, Key Laboratory of Polymer Materials Ministry of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, 730070, Gansu, People's Republic of China
| | - Chenghao Li
- Key Laboratory of Traditional Chinese Medicine Prevention and Treatment, Gansu University of Traditional Chinese Medicine, Lanzhou, 730000, China
| | - Jinhui Tong
- Key Laboratory of Eco-Environment-Related Polymer Materials Ministry of Education, Key Laboratory of Polymer Materials Ministry of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, 730070, Gansu, People's Republic of China
| | - Ziqiang Lei
- Key Laboratory of Eco-Environment-Related Polymer Materials Ministry of Education, Key Laboratory of Polymer Materials Ministry of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, 730070, Gansu, People's Republic of China
| |
Collapse
|
3
|
A staggered type of 0D/2D CuInS2/NiAl-LDH heterojunction with enhanced photocatalytic performance for the degradation of 2,4-Dichlorophenol. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121215] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
4
|
Luo M, Yukawa H, Baba Y. Micro-/nano-fluidic devices and in vivo fluorescence imaging based on quantum dots for cytologic diagnosis. LAB ON A CHIP 2022; 22:2223-2236. [PMID: 35583091 DOI: 10.1039/d2lc00113f] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Semiconductor quantum dots (QDs) possess attractive merits over traditional organic dyes, such as tunable emission, narrow emission spectra and good resistance against optical bleaching, and play a vital role in biosensing and bioimaging for cytologic diagnoses. Microfluidic technology is a potentially useful strategy, as it provides a rapid platform for tracing of disease markers. In vivo fluorescence imaging (FI) based on QDs has become popular for the analysis of complex biological processes. We herein report the applications of multifunctional fluorescent QDs as sensitive probes for diagnoses on cancer medicine and stem cell therapy via microfluidic chips and in vivo imaging.
Collapse
Affiliation(s)
- Minchuan Luo
- Nanobio Analytical Chemistry, Biomolecular Chemistry, Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan.
| | - Hiroshi Yukawa
- Nanobio Analytical Chemistry, Biomolecular Chemistry, Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan.
- Institute of Nano-Life-Systems, Institutes of Innovation for Future Society, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
- Institute for Quantum Life Science, Quantum Life and Medical Science Directorate, National Institutes for Quantum Science and Technology, Anagawa, Inage-ku, Chiba, 263-8555, Japan
- Nagoya University Institute for Advanced Research, Advanced Analytical and Diagnostic Imaging Center (AADIC)/Medical Engineering Unit (MEU), B3 Unit, Tsurumai 65, Showa-ku, Nagoya 466-8550, Japan
- Development of Quantum-nano Cancer Photoimmunotherapy for Clinical Application of Refractory Cancer, Nagoya University, Tsurumai 65, Showa-ku, Nagoya 466-8550, Japan
| | - Yoshinobu Baba
- Nanobio Analytical Chemistry, Biomolecular Chemistry, Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan.
- Institute of Nano-Life-Systems, Institutes of Innovation for Future Society, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
- Institute for Quantum Life Science, Quantum Life and Medical Science Directorate, National Institutes for Quantum Science and Technology, Anagawa, Inage-ku, Chiba, 263-8555, Japan
| |
Collapse
|
5
|
Biomimetic synthesis of CuInS2 nanoparticles: Characterization, cytotoxicity, and application in quantum dots sensitized solar cells. ARAB J CHEM 2021. [DOI: 10.1016/j.arabjc.2021.103176] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
6
|
Long Z, Zhang W, Tian J, Chen G, Liu Y, Liu R. Recent research on the luminous mechanism, synthetic strategies, and applications of CuInS2 quantum dots. Inorg Chem Front 2021. [DOI: 10.1039/d0qi01228a] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
We discuss the synthesis and luminescence mechanisms of CuInS2 QDs, the strategies to improve their luminous performance and their potential application in light-emitting devices, solar energy conversion, and the biomedical field.
Collapse
Affiliation(s)
- Zhiwei Long
- National Engineering Research Center for Rare Earth Materials
- General Research Institute for Nonferrous Metals
- Grirem Advanced Materials Co. Ltd
- Beijing
- P. R China
| | - Wenda Zhang
- National Engineering Research Center for Rare Earth Materials
- General Research Institute for Nonferrous Metals
- Grirem Advanced Materials Co. Ltd
- Beijing
- P. R China
| | - Junhang Tian
- National Engineering Research Center for Rare Earth Materials
- General Research Institute for Nonferrous Metals
- Grirem Advanced Materials Co. Ltd
- Beijing
- P. R China
| | - Guantong Chen
- National Engineering Research Center for Rare Earth Materials
- General Research Institute for Nonferrous Metals
- Grirem Advanced Materials Co. Ltd
- Beijing
- P. R China
| | - Yuanhong Liu
- National Engineering Research Center for Rare Earth Materials
- General Research Institute for Nonferrous Metals
- Grirem Advanced Materials Co. Ltd
- Beijing
- P. R China
| | - Ronghui Liu
- National Engineering Research Center for Rare Earth Materials
- General Research Institute for Nonferrous Metals
- Grirem Advanced Materials Co. Ltd
- Beijing
- P. R China
| |
Collapse
|
7
|
Gu S, Guo C, Wang H, Tian G, Xu S, Wang L. A Versatile Strategy for Surface Functionalization of Hydrophobic Nanoparticle by Boronic Acid Modified Polymerizable Diacetylene Derivatives. Front Chem 2019; 7:734. [PMID: 31737607 PMCID: PMC6839036 DOI: 10.3389/fchem.2019.00734] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 10/14/2019] [Indexed: 01/12/2023] Open
Abstract
The flourishing advancements in nanotechnology significantly boost their application in biomedical fields. Whereas, inorganic nanomaterials are normally prepared and capped with hydrophobic ligands, which require essential surface modification to increase their biocompatibility and endow extra functions. Phenylboronic acid derivatives have long been known for its capacity for selective recognition of saccharides. Herein, we demonstrated a versatile surface modification strategy to directly convert hydrophobic inorganic nanocrystals into water-dispersible and targeting nanocomposites by employing boronic acid modified photo-polymerizable 10,12-pentacosadiynoicacid and further explore its potentials in selective cancer cell imaging.
Collapse
Affiliation(s)
- Shiwei Gu
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, China
| | - Chang Guo
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, China
| | - Hui Wang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, China
| | - Guangjun Tian
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, China
| | - Suying Xu
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, China
| | - Leyu Wang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, China
| |
Collapse
|
8
|
Akram R, Arshad A, Dar SU, Basharat M, Liu W, Zhang S, Wu Z, Wu D. Biocompatible fluorescent polyamine‐based cyclophosphazene hybrid nanospheres for targeted cell imaging. POLYM ADVAN TECHNOL 2019. [DOI: 10.1002/pat.4778] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Raheel Akram
- Key Laboratory of Carbon Fiber and Functional PolymersBeijing University of Chemical Technology, Ministry of Education Beijing China
| | - Anila Arshad
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Environmentally Harmful Chemical AnalysisBeijing University of Chemical Technology Beijing China
| | - Sami Ullah Dar
- Key Laboratory of Carbon Fiber and Functional PolymersBeijing University of Chemical Technology, Ministry of Education Beijing China
| | - Majid Basharat
- Key Laboratory of Carbon Fiber and Functional PolymersBeijing University of Chemical Technology, Ministry of Education Beijing China
| | - Wei Liu
- Key Laboratory of Carbon Fiber and Functional PolymersBeijing University of Chemical Technology, Ministry of Education Beijing China
| | - Shuangkun Zhang
- Key Laboratory of Carbon Fiber and Functional PolymersBeijing University of Chemical Technology, Ministry of Education Beijing China
| | - Zhanpeng Wu
- Key Laboratory of Carbon Fiber and Functional PolymersBeijing University of Chemical Technology, Ministry of Education Beijing China
| | - Dezhen Wu
- State Key Laboratory of Chemical Resource EngineeringBeijing University of Chemical Technology Beijing China
| |
Collapse
|
9
|
Chetty SS, Praneetha S, Vadivel Murugan A, Govarthanan K, Verma RS. Microwave‐Assisted Synthesis of Quasi‐Pyramidal CuInS
2
–ZnS Nanocrystals for Enhanced Near‐Infrared Targeted Fluorescent Imaging of Subcutaneous Melanoma. ACTA ACUST UNITED AC 2018; 3:e1800127. [DOI: 10.1002/adbi.201800127] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 09/24/2018] [Indexed: 01/22/2023]
Affiliation(s)
- S. Shashank Chetty
- Advanced Functional Nanostructured Materials LaboratoryCentre for Nanoscience and TechnologyMadanjeet School of Green Energy TechnologiesPondicherry University (A Central University) Puducherry 605014 India
| | - S. Praneetha
- Advanced Functional Nanostructured Materials LaboratoryCentre for Nanoscience and TechnologyMadanjeet School of Green Energy TechnologiesPondicherry University (A Central University) Puducherry 605014 India
| | - A. Vadivel Murugan
- Advanced Functional Nanostructured Materials LaboratoryCentre for Nanoscience and TechnologyMadanjeet School of Green Energy TechnologiesPondicherry University (A Central University) Puducherry 605014 India
| | - Kavitha Govarthanan
- Stem Cell and Molecular Biology LaboratoryBhupat and Jyoti Mehta School of BiosciencesDepartment of BiotechnologyIndian Institute of Technology‐Madras (IIT‐M) Chennai 600036 India
| | - Rama S. Verma
- Stem Cell and Molecular Biology LaboratoryBhupat and Jyoti Mehta School of BiosciencesDepartment of BiotechnologyIndian Institute of Technology‐Madras (IIT‐M) Chennai 600036 India
| |
Collapse
|
10
|
Wang L, Sun YX, Zhang F, Li Y. Synthesis of CuInS2 quantum dots for synchronous fluorescent assay of glutathione in foods and biological fluids. J Photochem Photobiol A Chem 2018. [DOI: 10.1016/j.jphotochem.2017.12.047] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
11
|
Spangler LC, Chu R, Lu L, Kiely CJ, Berger BW, McIntosh S. Enzymatic biomineralization of biocompatible CuInS 2, (CuInZn)S 2 and CuInS 2/ZnS core/shell nanocrystals for bioimaging. NANOSCALE 2017; 9:9340-9351. [PMID: 28661538 DOI: 10.1039/c7nr02852k] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
This work demonstrates a bioenabled fully aqueous phase and room temperature route to the synthesis of CuInS2/ZnS core/shell quantum confined nanocrystals conjugated to IgG antibodies and used for fluorescent tagging of THP-1 leukemia cells. This elegant, straightforward and green approach avoids the use of solvents, high temperatures and the necessity to phase transfer the nanocrystals prior to application. Non-toxic CuInS2, (CuInZn)S2, and CuInS2/ZnS core/shell quantum confined nanocrystals are synthesized via a biomineralization process based on a single recombinant cystathionine γ-lyase (CSE) enzyme. First, soluble In-S complexes are formed from indium acetate and H2S generated by CSE, which are then stabilized by l-cysteine in solution. The subsequent addition of copper, or both copper and zinc, precursors then results in the immediate formation of CuInS2 or (CuInZn)S2 quantum dots. Shell growth is realized through subsequent introduction of Zn acetate to the preformed core nanocrystals. The size and optical properties of the nanocrystals are tuned by adjusting the indium precursor concentration and initial incubation period. CuInS2/ZnS core/shell particles are conjugated to IgG antibodies using EDC/NHS cross-linkers and then applied in the bioimaging of THP-1 cells. Cytotoxicity tests confirm that CuInS2/ZnS core/shell quantum dots do not cause cell death during bioimaging. Thus, this biomineralization enabled approach provides a facile, low temperature route for the fully aqueous synthesis of non-toxic CuInS2/ZnS quantum dots, which are ideal for use in bioimaging applications.
Collapse
Affiliation(s)
- Leah C Spangler
- Department of Chemical and Biomolecular Engineering, Lehigh University, Bethlehem, PA 18015, USA.
| | | | | | | | | | | |
Collapse
|
12
|
Girma WM, Fahmi MZ, Permadi A, Abate MA, Chang JY. Synthetic strategies and biomedical applications of I–III–VI ternary quantum dots. J Mater Chem B 2017; 5:6193-6216. [DOI: 10.1039/c7tb01156c] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
In this review, we discuss recent advances of I–III–VI QDs with a major focus on synthesis and biomedical applications; advantages include low toxicity and fluorescent tuning in the biological window.
Collapse
Affiliation(s)
- Wubshet Mekonnen Girma
- Department of Chemical Engineering
- National Taiwan University of Science and Technology
- Taipei
- Republic of China
| | | | - Adi Permadi
- Department of Chemical Engineering
- National Taiwan University of Science and Technology
- Taipei
- Republic of China
| | - Mulu Alemayehu Abate
- Department of Chemical Engineering
- National Taiwan University of Science and Technology
- Taipei
- Republic of China
| | - Jia-Yaw Chang
- Department of Chemical Engineering
- National Taiwan University of Science and Technology
- Taipei
- Republic of China
| |
Collapse
|