1
|
Şenkardeş S, Atlıhan İ, Çayır E, Mega Tiber P, Orun O, Nigiz Ş, Özkul C, Gündüz MG, Küçükgüzel ŞG. Synthesis and Evaluation of Novel Metacetamol Derivatives with Hydrazone Moiety as Anticancer and Antimicrobial Agents. Chem Biodivers 2023; 20:e202300766. [PMID: 37417710 DOI: 10.1002/cbdv.202300766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 06/26/2023] [Accepted: 06/27/2023] [Indexed: 07/08/2023]
Abstract
By exploiting the wide biological potential of the hydrazone scaffold, a series of hydrazone derivatives were synthesized, starting from N-(3-hydroxyphenyl)acetamide (metacetamol). The structures of the compounds were determined using IR, 1 H and 13 C-NMR, and mass spectroscopic methods. The obtained molecules (3 a-j) were evaluated for their anticancer potential against MDA-MB-231 and MCF-7 breast cancer cell lines. According to the CCK-8 assay, all tested compounds showed moderate to potent anticancer activity. Among them, N-(3-(2-(2-(4-nitrobenzylidene)hydrazinyl)-2-oxoethoxy)phenyl)acetamide (3 e) was found to be the most effective derivative with an IC50 value of 9.89 μM against MDA-MB-231 cell lines. This compound was further tested for its potential effects on the apoptotic pathway. Molecular docking studies was also carried out for 3 e in the colchicine binding pocket of tubulin. Additionally, compound 3 e also demonstrated effective antifungal activity, particularly against Candida krusei (MIC=8 μg/ml), indicating that nitro group at the 4th position of the phenyl ring was the most preferable substituent for both cytotoxic and antimicrobial activity. Our preliminary findings suggest that compound 3 e could be exploited as a leading structure for further anticancer and antifungal drug development.
Collapse
Affiliation(s)
- Sevil Şenkardeş
- Marmara University, Faculty of Pharmacy, Department of Pharmaceutical Chemistry, Maltepe, Başıbüyük, 34854, Istanbul, Turkey
| | - İrem Atlıhan
- Marmara University, Institute of Health Sciences, Department of Biophysics, 34865, Istanbul, Turkey
| | - Elif Çayır
- Marmara University, Faculty of Pharmacy, 34854, Istanbul, Turkey
| | - Pınar Mega Tiber
- Marmara University, Faculty of Medicine, Department of Biophysics, 34854, Istanbul, Turkey
| | - Oya Orun
- Marmara University, Faculty of Medicine, Department of Biophysics, 34854, Istanbul, Turkey
| | - Şeyma Nigiz
- Hacettepe University, Faculty of Pharmacy, Department of Pharmaceutical Microbiology, Sıhhiye, 06100, Ankara, Turkey
| | - Ceren Özkul
- Hacettepe University, Faculty of Pharmacy, Department of Pharmaceutical Microbiology, Sıhhiye, 06100, Ankara, Turkey
| | - Miyase Gözde Gündüz
- Hacettepe University, Faculty of Pharmacy, Department of Pharmaceutical Chemistry, Sıhhiye, 06100, Ankara, Turkey
| | - Ş Güniz Küçükgüzel
- Fenerbahçe University, Faculty of Pharmacy, Department of Pharmaceutical Chemistry, Ataşehir, 34758, Istanbul, Turkey
| |
Collapse
|
2
|
Jin L, Chen X, Pang C, Zhou L, Liu Y, Sun Y, Xu L, Wang Y, Chen Y. Investigation of the antibacterial mechanism of the novel bactericide dioctyldiethylenetriamine (Xinjunan). PEST MANAGEMENT SCIENCE 2023; 79:2780-2791. [PMID: 36924248 DOI: 10.1002/ps.7456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 03/11/2023] [Accepted: 03/16/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND Chemical control is an important method for tackling crop diseases. Clarifying the antibacterial mechanisms of bactericides is useful for developing new bactericides and for continuous plant disease control. In this study, the antibacterial mechanism of a novel bactericide, dioctyldiethylenetriamine (Xinjunan), which affects adenosine triphosphate (ATP) synthesis, was investigated. RESULTS The results of an in vitro inhibition activity assay showed that dioctyldiethylenetriamine inhibited the growth of a variety of plant pathogenic bacteria, especially that of Xanthomonas spp. Scanning electron microscopy demonstrated that dioctyldiethylenetriamine caused cell distortion and rupture. To investigate the molecular mechanism underlying the antibacterial effect of dioctyldiethylenetriamine, transcriptome sequencing (RNA-seq) was performed for Xanthomonas oryzae pv. oryzae (Xoo, PXO99A) treated with dioctyldiethylenetriamine, which has strong antibacterial effects against xanthomonads. The results showed that differentially expressed genes were enriched mainly in the oxidative phosphorylation and tricarboxylic acid (TCA) cycle pathways after treatment. Moreover, the dioctyldiethylenetriamine treatment exhibited reduction in enzyme activities in the TCA cycle, decreased intracellular nicotinamide adenine dinucleotide and ATP contents, and increased accumulation of reactive oxygen species. In addition, dioctyldiethylenetriamine exhibited an inhibitory effect on the growth of other bacterial pathogens by reducing ATP synthesis. CONCLUSION This is the first report of the mechanism by which dioctyldiethylenetriamine inhibits ATP synthesis by affecting oxidative phosphorylation and TCA cycle pathways in bacteria. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Ling Jin
- School of Plant Protection, Anhui Agricultural University, Hefei, China
- Key Laboratory of Biology and Sustainable Management of Plant Diseases and Pests of Anhui Higher Education Institutes, School of Plant Protection, Anhui Agricultural University, Hefei, China
- Anhui Province Laboratory for Green Pesticide Development and Application, School of Plant Protection, Anhui Agricultural University, Hefei, China
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Hefei Research Center, Hefei, China
- Key Laboratory of Integrated Crop Pest Management of Anhui Province, School of Plant Protection, Anhui Agricultural University, Hefei, China
| | - Xing Chen
- School of Plant Protection, Anhui Agricultural University, Hefei, China
- Key Laboratory of Biology and Sustainable Management of Plant Diseases and Pests of Anhui Higher Education Institutes, School of Plant Protection, Anhui Agricultural University, Hefei, China
- Anhui Province Laboratory for Green Pesticide Development and Application, School of Plant Protection, Anhui Agricultural University, Hefei, China
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Hefei Research Center, Hefei, China
- Key Laboratory of Integrated Crop Pest Management of Anhui Province, School of Plant Protection, Anhui Agricultural University, Hefei, China
| | - Chaoyue Pang
- School of Plant Protection, Anhui Agricultural University, Hefei, China
- Key Laboratory of Biology and Sustainable Management of Plant Diseases and Pests of Anhui Higher Education Institutes, School of Plant Protection, Anhui Agricultural University, Hefei, China
- Anhui Province Laboratory for Green Pesticide Development and Application, School of Plant Protection, Anhui Agricultural University, Hefei, China
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Hefei Research Center, Hefei, China
- Key Laboratory of Integrated Crop Pest Management of Anhui Province, School of Plant Protection, Anhui Agricultural University, Hefei, China
| | - Li Zhou
- School of Plant Protection, Anhui Agricultural University, Hefei, China
- Key Laboratory of Biology and Sustainable Management of Plant Diseases and Pests of Anhui Higher Education Institutes, School of Plant Protection, Anhui Agricultural University, Hefei, China
- Anhui Province Laboratory for Green Pesticide Development and Application, School of Plant Protection, Anhui Agricultural University, Hefei, China
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Hefei Research Center, Hefei, China
- Key Laboratory of Integrated Crop Pest Management of Anhui Province, School of Plant Protection, Anhui Agricultural University, Hefei, China
| | - Yu Liu
- School of Plant Protection, Anhui Agricultural University, Hefei, China
- Key Laboratory of Biology and Sustainable Management of Plant Diseases and Pests of Anhui Higher Education Institutes, School of Plant Protection, Anhui Agricultural University, Hefei, China
- Anhui Province Laboratory for Green Pesticide Development and Application, School of Plant Protection, Anhui Agricultural University, Hefei, China
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Hefei Research Center, Hefei, China
- Key Laboratory of Integrated Crop Pest Management of Anhui Province, School of Plant Protection, Anhui Agricultural University, Hefei, China
| | - Yang Sun
- School of Plant Protection, Anhui Agricultural University, Hefei, China
- Key Laboratory of Biology and Sustainable Management of Plant Diseases and Pests of Anhui Higher Education Institutes, School of Plant Protection, Anhui Agricultural University, Hefei, China
- Anhui Province Laboratory for Green Pesticide Development and Application, School of Plant Protection, Anhui Agricultural University, Hefei, China
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Hefei Research Center, Hefei, China
- Key Laboratory of Integrated Crop Pest Management of Anhui Province, School of Plant Protection, Anhui Agricultural University, Hefei, China
| | - Liang Xu
- Shandong Vicome Greenland Chemical Co., Ltd, Shandong, China
| | - Yongxing Wang
- Shandong Vicome Greenland Chemical Co., Ltd, Shandong, China
| | - Yu Chen
- School of Plant Protection, Anhui Agricultural University, Hefei, China
- Key Laboratory of Biology and Sustainable Management of Plant Diseases and Pests of Anhui Higher Education Institutes, School of Plant Protection, Anhui Agricultural University, Hefei, China
- Anhui Province Laboratory for Green Pesticide Development and Application, School of Plant Protection, Anhui Agricultural University, Hefei, China
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Hefei Research Center, Hefei, China
- Key Laboratory of Integrated Crop Pest Management of Anhui Province, School of Plant Protection, Anhui Agricultural University, Hefei, China
| |
Collapse
|
3
|
Design, synthesis, and antiviral activities of chalcone derivatives containing pyrimidine. JOURNAL OF SAUDI CHEMICAL SOCIETY 2022. [DOI: 10.1016/j.jscs.2022.101590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
4
|
El-Zemity SR, Badawy ME, Esmaiel KE, Badr MM. Synthesis, antioxidant, antimicrobial, and molecular docking studies of some N-cinnamyl phenylacetamide and N-(3,7-dimethylocta-2,6-dien-1-yl) phenylacetamide derivatives. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
5
|
Kairytė K, Grybaitė B, Vaickelionienė R, Sapijanskaitė-Banevič B, Kavaliauskas P, Mickevičius V. Synthesis and Biological Activity Characterization of Novel 5-Oxopyrrolidine Derivatives with Promising Anticancer and Antimicrobial Activity. Pharmaceuticals (Basel) 2022; 15:ph15080970. [PMID: 36015119 PMCID: PMC9415606 DOI: 10.3390/ph15080970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 08/01/2022] [Accepted: 08/03/2022] [Indexed: 11/16/2022] Open
Abstract
The 1-(4-acetamidophenyl)-5-oxopyrrolidine carboxylic acid was applied for synthesizing derivatives bearing azole, diazole, and hydrazone moieties in the molecule. Modification of an acetamide fragment to the free amino group afforded compounds with two functional groups, which enabled to provide a series of 4-substituted-1-(4-substituted phenyl)pyrrolidine-2-ones. The resulted compounds 2 and 4-22 were subjected to the in vitro anticancer and antimicrobial activity determination. The compounds 18-22 exerted the most potent anticancer activity against A549 cells. Furthermore, compound 21 bearing 5-nitrothiophene substituents demonstrated promising and selective antimicrobial activity against multidrug-resistant Staphylococcus aureus strains, including linezolid and tedizolid-resistant S. aureus. These results demonstrate that 5-oxopyrolidine derivatives are attractive scaffolds for the further development of anticancer and antimicrobial compounds targeting multidrug-resistant Gram-positive pathogens.
Collapse
Affiliation(s)
- Karolina Kairytė
- Department of Organic Chemistry, Kaunas University of Technology, Radvilėnų Rd. 19, LT-50254 Kaunas, Lithuania
| | - Birutė Grybaitė
- Department of Organic Chemistry, Kaunas University of Technology, Radvilėnų Rd. 19, LT-50254 Kaunas, Lithuania
| | - Rita Vaickelionienė
- Department of Organic Chemistry, Kaunas University of Technology, Radvilėnų Rd. 19, LT-50254 Kaunas, Lithuania
| | | | - Povilas Kavaliauskas
- Department of Organic Chemistry, Kaunas University of Technology, Radvilėnų Rd. 19, LT-50254 Kaunas, Lithuania
- Transplantation-Oncology Infectious Diseases Program, Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine of Cornell University, 527 East 68th Street, New York, NY 10065, USA
- Department of Microbiology and Immunology, University of Maryland Baltimore School of Medicine, 655 W. Baltimore Street, Baltimore, MD 21201, USA
- Biological Research Center, Veterinary Academy, Lithuanian University of Health Sciences, Tilžės St. 18, LT-47181 Kaunas, Lithuania
- Institute of Infectious Diseases and Pathogenic Microbiology, Birštono Str. 38A, LT-59116 Prienai, Lithuania
- Correspondence:
| | - Vytautas Mickevičius
- Department of Organic Chemistry, Kaunas University of Technology, Radvilėnų Rd. 19, LT-50254 Kaunas, Lithuania
| |
Collapse
|
6
|
Ji J, Shao WB, Chu PL, Xiang HM, Qi PY, Zhou X, Wang PY, Yang S. 1,3,4-Oxadiazole Derivatives as Plant Activators for Controlling Plant Viral Diseases: Preparation and Assessment of the Effect of Auxiliaries. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:7929-7940. [PMID: 35731909 DOI: 10.1021/acs.jafc.2c01988] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Plant viral diseases cause the loss of millions of dollars to agriculture around the world annually. Therefore, the development of highly efficient, ultra-low-dosage agrochemicals is desirable for protecting the health of crops and ensuring food security. Herein, a series of 1,3,4-oxadiazole derivatives bearing an isopropanol amine moiety was prepared, and the inhibitory activity against tobacco mosaic virus (TMV) was assessed. Notably, compound A14 exhibited excellent anti-TMV protective activity with an EC50 value of 137.7 mg L-1, which was superior to that of ribavirin (590.0 mg L-1) and ningnanmycin (248.2 mg L-1). Moreover, the anti-TMV activity of some compounds could be further enhanced (by up to 5-30%) through supplementation with 0.1% auxiliaries. Biochemical assays suggested that compound A14 could suppress the biosynthesis of TMV and induce the plant's defense response. Given these merits, designed compounds had outstanding bioactivities and unusual action mechanisms and were promising candidates for controlling plant viral diseases.
Collapse
Affiliation(s)
- Jin Ji
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Wu-Bin Shao
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Pan-Long Chu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Hong-Mei Xiang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Pu-Ying Qi
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Xiang Zhou
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Pei-Yi Wang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Song Yang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| |
Collapse
|
7
|
Zhu JJ, Wang PY, Long ZQ, Xiang SZ, Zhang JR, Li ZX, Wu YY, Shao WB, Zhou X, Liu LW, Yang S. Design, Synthesis, and Biological Profiles of Novel 1,3,4-Oxadiazole-2-carbohydrazides with Molecular Diversity. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:2825-2838. [PMID: 35201749 DOI: 10.1021/acs.jafc.1c07190] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
To unceasingly expand the molecular diversity of 1,3,4-oxadiazole-2-carbohydrazides, herein, small fragments (including -CH2-, -OCH2-, and -SCH2-) were incorporated into the target compounds to screen out the potential succinate dehydrogenase inhibitors (SDHIs). The bioassay results showed that the antifungal effects (expressed by EC50) against Sclerotinia sclerotiorum, Botryosphaeria dothidea, Fusarium oxysporum, and Colletotrichun higginsianum could reach 1.29 (10a), 0.63 (8h), 1.50 (10i), and 2.09 (10i) μg/mL, respectively, which were slightly lower than those of carbendazim (EC50 were 0.69, 0.13, 0.55, and 0.80 μg/mL, respectively). Especially, compound 10h was extremely bioactive against Gibberella zeae (G. z.) with an EC50 value of 0.45 μg/mL. This outcome was better than that of fluopyram (3.76 μg/mL) and was similar to prochloraz (0.47 μg/mL). In vivo trials against the corn scab (infected by G. z.) showed that compound 10h had control activity of 86.8% at 200 μg/mL, which was better than that of boscalid (79.6%). Further investigations found that compound 10h could inhibit the enzymatic activity of SDH in the G. z. strain with an IC50 value of 3.67 μM, indicating that potential SDHIs might be developed. Additionally, the other biological activities of these molecules were screened simultaneously. The anti-oomycete activity toward Phytophthora infestans afforded a minimal EC50 value of 3.22 μg/mL (10h); compound 4d could strongly suppress the growth of bacterial strains Xanthomonas axonopodis pv. citri and Xanthomonas oryzae pv. oryzae with EC50 values of 3.79 and 11.4 μg/mL, respectively; and compound 10a displayed some insecticidal activity toward Plutella xylostella. Given their multipurpose features, these frameworks could be actively studied as potential pesticide leads.
Collapse
Affiliation(s)
- Jian-Jun Zhu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Pei-Yi Wang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Zhou-Qing Long
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Shu-Zhen Xiang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Jun-Rong Zhang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Zhen-Xing Li
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Yuan-Yuan Wu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Wu-Bin Shao
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Xiang Zhou
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Li-Wei Liu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Song Yang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| |
Collapse
|
8
|
Peng F, Liu T, Wang Q, Liu F, Cao X, Yang J, Liu L, Xie C, Xue W. Antibacterial and Antiviral Activities of 1,3,4-Oxadiazole Thioether 4 H-Chromen-4-one Derivatives. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:11085-11094. [PMID: 34516137 DOI: 10.1021/acs.jafc.1c03755] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Various 1,3,4-oxadiazole thioether 4H-chromen-4-one derivatives were conceived. The title compounds demonstrated striking inhibitory effects against Xac, Psa, and Xoo. EC50 data exhibited that A8 (19.7 μg/mL) had better antibacterial activity against Xoo than myricetin, BT, and TC. Simultaneously, the mechanism of action of A8 had been verified by SEM. The results of anti-tobacco mosaic virus indicated that A9 had the best in vivo antiviral effect compared with ningnanmycin. From the data of MST, it could be seen that A9 (0.003 ± 0.001 μmol/L) exhibited a strong binding capacity, which was far superior to ningnanmycin (2.726 ± 1.301 μmol/L). This study shows that the 1,3,4-oxadiazole thioether 4H-chromen-4-one derivatives may become agricultural drugs with great potential.
Collapse
Affiliation(s)
- Feng Peng
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering; Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education; Research and Development Center for Fine Chemicals, Guizhou University, Guiyang 550025, P.R. China
| | - Tingting Liu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering; Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education; Research and Development Center for Fine Chemicals, Guizhou University, Guiyang 550025, P.R. China
| | - Qifan Wang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering; Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education; Research and Development Center for Fine Chemicals, Guizhou University, Guiyang 550025, P.R. China
| | - Fang Liu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering; Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education; Research and Development Center for Fine Chemicals, Guizhou University, Guiyang 550025, P.R. China
| | - Xiao Cao
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering; Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education; Research and Development Center for Fine Chemicals, Guizhou University, Guiyang 550025, P.R. China
| | - Jinsong Yang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering; Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education; Research and Development Center for Fine Chemicals, Guizhou University, Guiyang 550025, P.R. China
| | - Liwei Liu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering; Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education; Research and Development Center for Fine Chemicals, Guizhou University, Guiyang 550025, P.R. China
| | - Chengwei Xie
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering; Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education; Research and Development Center for Fine Chemicals, Guizhou University, Guiyang 550025, P.R. China
| | - Wei Xue
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering; Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education; Research and Development Center for Fine Chemicals, Guizhou University, Guiyang 550025, P.R. China
| |
Collapse
|
9
|
Hou S, Xie D, Yang J, Niu X, Hu D, Wu Z. Design, synthesis and antifungal evaluation of novel mandelic acid derivatives containing a 1,3,4-oxadiazothioether moiety. Chem Biol Drug Des 2021; 98:166-174. [PMID: 33969630 DOI: 10.1111/cbdd.13861] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 03/03/2021] [Accepted: 04/25/2021] [Indexed: 12/01/2022]
Abstract
A series of novel mandelic acid derivatives containing a 1,3,4-oxadiazothioether moiety were designed and synthesized. Bioassay results showed that some target compounds exhibited certain antifungal activity against six kinds of pathogenic fungi in vitro. Among the compounds, the EC50 values of T41 against Gibberella saubinetii, Verticillium dahlia and Sclerotinia sclerotiorum were 31.0, 27.0 and 32.1 μg/ml, respectively, and the EC50 value of T14 against S. sclerotiorum was 14.7 μg/ml. The antifungal activity against the resistant fungus S. sclerotiorum indicated that this series of target compounds may have the similar action modes or sites as the commercialized succinate dehydrogenase inhibitor carboxin. A morphological study with fluorescence microscope demonstrated that T41 can significantly destroy the membrane integrity of G. saubinetii.
Collapse
Affiliation(s)
- Shuaitao Hou
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, China
| | - Dewen Xie
- School of Pharmaceutical Sciences, Guizhou University, Guiyang, China
| | - Jingxin Yang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, China
| | - Xue Niu
- School of Chemistry and Chemical Engineering, Guizhou University, Guiyang, China
| | - Deyu Hu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, China
| | - Zhibing Wu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, China
| |
Collapse
|
10
|
Design, synthesis, and antibacterial activity of novel myricetin derivatives containing sulfonate. MONATSHEFTE FUR CHEMIE 2021. [DOI: 10.1007/s00706-021-02739-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
AbstractA series of myricetin derivatives containing sulfonate groups were designed and synthesized. Preliminary antibacterial activity showed that most of the target compounds exhibited significant biological activities against Xanthomonas axonopodis pv. Citri (Xac), Ralstonia solanacearum (Rs), and Xanthomonas oryzae pv. Oryzae (Xoo). In particular, the EC50 value of compound 3e was 13.76 μg/cm3 against Xac, which was better than commercial reagents bismerthiazol (50.32 µg/cm3) and thiodiazole copper. (83.27 µg/cm3), and the EC50 value of compound 3j was 11.92 μg/cm3 against Xoo in vitro, The result was better than that of bismerthiazol (72.08 µg/cm3) and thiodiazole copper (99.26 µg/cm3). Compound 3j displayed the better in vivo activity against rice bacterial leaf blight than bismerthiazol and thiodiazole copper. Meanwhile, the antibacterial mechanism of compounds 3e and 3j was studied by scanning electron microscope (SEM). These results suggested that myricetin derivatives containing sulfonate can be considered as a new antibacterial reagents.
Graphic abstract
Collapse
|
11
|
Zhou X, Ye Y, Liu S, Shao W, Liu L, Yang S, Wu Z. Design, synthesis and anti-TMV activity of novel α-aminophosphonate derivatives containing a chalcone moiety that induce resistance against plant disease and target the TMV coat protein. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2021; 172:104749. [PMID: 33518042 DOI: 10.1016/j.pestbp.2020.104749] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 11/08/2020] [Accepted: 11/11/2020] [Indexed: 05/24/2023]
Abstract
Plant viral diseases, known as "plant cancer", with high contagiosity can substantially reduce crop quality and yield. To identify potential anti-tobacco mosaic virus (TMV) agents with different mechanisms, a series of novel α-aminophosphonate derivatives containing a chalcone moiety were designed and synthesized. Bioassay results revealed that some target compounds exhibited improved curative activity against TMV in vivo, and the EC50 value of compound B3 was 356.7 mg L-1. The activities of the defensive enzymes POD and CAT from tobacco leaves treated with B3 and B17 showed that these target compounds could improve the photosynthetic ability of the leaves and activate plant host resistance against TMV infection. The binding constant between B3 and TMV Coat Protein (CP) (2.51 × 108 M-1), calculated by the fluorescence titration experiment and docking results, revealed that B3 has a strong interaction with TMV CP. Further docking analysis revealed that B3 was embedded between two layers of the TMV CP, which was consistent with the 2:1 binding mode of TMV CP and B3 determined by the binding affinity experiment. The TEM morphological study of TMV treated with B3 and B17 indicated that this series of target compounds may trigger the disassembly of TMV by interacting directly with TMV CP. This study provides new insight for the discovery of antiviral compounds with two different mechanisms of action.
Collapse
Affiliation(s)
- Xiang Zhou
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R & D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Yiqiang Ye
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R & D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Shasha Liu
- Guizhou University Medical college, Guiyang 550025, China
| | - Wubin Shao
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R & D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Liwei Liu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R & D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Song Yang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R & D of Fine Chemicals of Guizhou University, Guiyang 550025, China.
| | - Zhibing Wu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R & D of Fine Chemicals of Guizhou University, Guiyang 550025, China.
| |
Collapse
|
12
|
Shi J, Luo N, Ding M, Bao X. Synthesis, in vitro antibacterial and antifungal evaluation of novel 1,3,4-oxadiazole thioether derivatives bearing the 6-fluoroquinazolinylpiperidinyl moiety. CHINESE CHEM LETT 2020. [DOI: 10.1016/j.cclet.2019.06.037] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
13
|
Muluk MB, Dhumal ST, Phatak PS, Rehman NNMA, Dixit PP, Choudhari PB, Mane RA, Haval KP. Synthesis, antimicrobial activity, and molecular docking study of formylnaphthalenyloxymethyl‐triazolyl‐
N
‐phenylacetamides. J Heterocycl Chem 2019. [DOI: 10.1002/jhet.3628] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Mahesh B. Muluk
- Department of ChemistryDr. Babasaheb Ambedkar Marathwada University Sub‐Campus Osmanabad 413501 Maharashtra India
| | - Sambhaji T. Dhumal
- Department of ChemistryDr. Babasaheb Ambedkar Marathwada University Aurangabad 431004 Maharashtra India
| | - Pramod S. Phatak
- Department of ChemistryDr. Babasaheb Ambedkar Marathwada University Sub‐Campus Osmanabad 413501 Maharashtra India
| | - Naziya N. M. A. Rehman
- Department of MicrobiologyDr. Babasaheb Ambedkar Marathwada University, Sub‐Campus Osmanabad 413501 Maharashtra India
| | - Prashant P. Dixit
- Department of MicrobiologyDr. Babasaheb Ambedkar Marathwada University, Sub‐Campus Osmanabad 413501 Maharashtra India
| | - Prafulla B. Choudhari
- Department of Pharmaceutical ChemistryBharati Vidhyapeeth College of Pharmacy Kolhapur 416013 Maharashtra India
| | - Ramrao A. Mane
- Department of ChemistryDr. Babasaheb Ambedkar Marathwada University Aurangabad 431004 Maharashtra India
| | - Kishan P. Haval
- Department of ChemistryDr. Babasaheb Ambedkar Marathwada University Sub‐Campus Osmanabad 413501 Maharashtra India
| |
Collapse
|
14
|
Tao QQ, Liu LW, Wang PY, Long QS, Zhao YL, Jin LH, Xu WM, Chen Y, Li Z, Yang S. Synthesis and In Vitro and In Vivo Biological Activity Evaluation and Quantitative Proteome Profiling of Oxadiazoles Bearing Flexible Heterocyclic Patterns. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:7626-7639. [PMID: 31241941 DOI: 10.1021/acs.jafc.9b02734] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
A novel series of simple 1,3,4-oxadiazoles that bear flexible heterocyclic patterns was prepared, and their biological activities in plant pathogenic bacteria, fungi, oomycetes, and Meloidogyne incognita in vitro and in vivo were screened to explore low-cost and versatile antimicrobial agents. Screening results showed that compounds, such as A0, B0, and C4, were bioactive against Xanthomonas oryzae pv oryzae in vitro and in vivo, and such bioactivities were superior to those of commercial agents bismerthiazol and thiodiazole copper. Their antibacterial mechanisms were further investigated by quantitative proteomics and concentration-dependent scanning electron microscopy images. Antifungal results indicated that compound A0 displayed a selective and better antifungal effect on Botrytis cinerea with inhibition rate of 96.8% at 50 μg/mL. Nematocidal bioassays suggested that compound D1 had good in vitro nematocidal activity toward M. incognita at 24, 48, and 72 h, with the corresponding insecticidal efficiency of 48.7%, 64.1%, and 87.2% at 40 μg/mL. In vivo study further confirmed that compounds D1 and F2 showed nematocidal actions at 80 μg/mL with a disease index of 1.5. Given these advantages, this kind of molecular frameworks could be a suitable platform for exploring highly efficient agrochemicals.
Collapse
Affiliation(s)
- Qing-Qing Tao
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education , Center for R&D of Fine Chemicals of Guizhou University , Guiyang 550025 , China
| | - Li-Wei Liu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education , Center for R&D of Fine Chemicals of Guizhou University , Guiyang 550025 , China
| | - Pei-Yi Wang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education , Center for R&D of Fine Chemicals of Guizhou University , Guiyang 550025 , China
| | - Qing-Su Long
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education , Center for R&D of Fine Chemicals of Guizhou University , Guiyang 550025 , China
| | - Yong-Liang Zhao
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education , Center for R&D of Fine Chemicals of Guizhou University , Guiyang 550025 , China
| | - Lin-Hong Jin
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education , Center for R&D of Fine Chemicals of Guizhou University , Guiyang 550025 , China
| | - Wei-Ming Xu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education , Center for R&D of Fine Chemicals of Guizhou University , Guiyang 550025 , China
| | - Yang Chen
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education , Center for R&D of Fine Chemicals of Guizhou University , Guiyang 550025 , China
| | - Zhong Li
- College of Pharmacy , East China University of Science & Technology , Shanghai 200237 , China
| | - Song Yang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education , Center for R&D of Fine Chemicals of Guizhou University , Guiyang 550025 , China
- College of Pharmacy , East China University of Science & Technology , Shanghai 200237 , China
| |
Collapse
|
15
|
Substituted phenyl[(5-benzyl-1,3,4-oxadiazol-2-yl)sulfanyl]acetates/acetamides as alkaline phosphatase inhibitors: Synthesis, computational studies, enzyme inhibitory kinetics and DNA binding studies. Bioorg Chem 2019; 90:103108. [PMID: 31284102 DOI: 10.1016/j.bioorg.2019.103108] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Revised: 07/01/2019] [Accepted: 07/02/2019] [Indexed: 11/23/2022]
Abstract
Substituted phenyl[(5-benzyl-1,3,4-oxadiazol-2-yl)sulfanyl]acetates/acetamides 9a-j were synthesized as alkaline phosphatase inhibitors. Phenyl acetic acid 1 through a series of reactions was converted into 5-benzyl-1,3,4-oxadiazole-2-thione 4. The intermediate oxadiazole 4 was then reacted with chloroacetyl derivatives of phenols 6a-f and anilines derivatives 8a-d to afford the title oxadiazole derivatives 9a-j. All of the title compounds 9a-j were evaluated for their inhibitory activity against human alkaline phosphatise (ALP). It was found that compounds 9a-j exhibited good to excellent alkaline phosphatase inhibitory activity especially 9h displayed potent activity with IC50 value 0.420 ± 0.012 µM while IC50 value of standard (KH2PO4) was 2.80 µM. The enzyme inhibitory kinetics of most potent inhibitor 9h was determined by Line-weaever Burk plots showing non-competitive mode of binding with enzyme. Molecular docking studies were performed against alkaline phosphatase enzyme (1EW2) to check the binding affinity of the synthesized compounds 9a-j against target protein. The compound 9h exhibited excellent binding affinity having binding energy value (-7.90 kcal/mol) compared to other derivatives. The brine shrimp viability assay results proved that derivative 9h was non-toxic at concentration used for enzyme assay. The lead compound 9h showed LD50 106.71 µM while the standard potassium dichromate showed LD50 0.891 µM. The DNA binding interactions of the synthesized compound 9h was also determined experimentally by spectrophotometric and electrochemical methods. The compound 9h was found to bind with grooves of DNA as depicted by both UV-Vis spectroscopy and cyclic voltammetry with binding constant values 7.83 × 103 and 7.95 × 103 M-1 respectively revealing significant strength of 9h-DNA complex. As dry lab and wet lab results concise each other it was concluded that synthesized compounds, especially compound 9h may serve as lead compound to design most potent inhibitors of human ALP.
Collapse
|
16
|
Wang PY, Wang MW, Zeng D, Xiang M, Rao JR, Liu QQ, Liu LW, Wu ZB, Li Z, Song BA, Yang S. Rational Optimization and Action Mechanism of Novel Imidazole (or Imidazolium)-Labeled 1,3,4-Oxadiazole Thioethers as Promising Antibacterial Agents against Plant Bacterial Diseases. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:3535-3545. [PMID: 30835115 DOI: 10.1021/acs.jafc.8b06242] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
The emergence and widespread occurrence of plant bacterial diseases that cause global production constraints have become major challenges to agriculture worldwide. To promote the discovery and development of new bactericides, imidazole-labeled 1,3,4-oxadiazole thioethers were first fabricated by integrating the crucially bioactive scaffolds of the imidazole motif and 1,3,4-oxadiazole skeleton in a single molecular architecture. Subsequently, a superior antibacterial compound A6 was gradually discovered possessing excellent competence against plant pathogens Xanthomonas oryzae pv oryzae and Xanthomonas axonopodis pv citri with EC50 values of 0.734 and 1.79 μg/mL, respectively. These values were better than those of commercial agents bismerthiazol (92.6 μg/mL) and thiodiazole copper (77.0 μg/mL). Further modifying the imidazole moiety into the imidazolium scaffold led to the discovery of an array of potent antibacterial compounds providing the corresponding minimum EC50 values of 0.295 and 0.607 μg/mL against the two strains. Moreover, a plausible action mechanism for attacking pathogens was proposed based on the concentration dependence of scanning electron microscopy, transmission electron microscopy, and fluorescence microscopy images. Given the simple molecular structures, easy synthetic procedure, and highly efficient bioactivity, imidazole (or imidazolium)-labeled 1,3,4-oxadiazole thioethers can be further explored and developed as promising indicators for the development of commercial drugs.
Collapse
Affiliation(s)
- Pei-Yi Wang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education , Center for R&D of Fine Chemicals of Guizhou University , Guiyang , 550025 , China
| | - Ming-Wei Wang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education , Center for R&D of Fine Chemicals of Guizhou University , Guiyang , 550025 , China
| | - Dan Zeng
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education , Center for R&D of Fine Chemicals of Guizhou University , Guiyang , 550025 , China
| | - Meng Xiang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education , Center for R&D of Fine Chemicals of Guizhou University , Guiyang , 550025 , China
| | - Jia-Rui Rao
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education , Center for R&D of Fine Chemicals of Guizhou University , Guiyang , 550025 , China
| | - Qing-Qing Liu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education , Center for R&D of Fine Chemicals of Guizhou University , Guiyang , 550025 , China
| | - Li-Wei Liu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education , Center for R&D of Fine Chemicals of Guizhou University , Guiyang , 550025 , China
| | - Zhi-Bing Wu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education , Center for R&D of Fine Chemicals of Guizhou University , Guiyang , 550025 , China
| | - Zhong Li
- College of Pharmacy , East China University of Science & Technology , Shanghai , China 200237
| | - Bao-An Song
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education , Center for R&D of Fine Chemicals of Guizhou University , Guiyang , 550025 , China
| | - Song Yang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education , Center for R&D of Fine Chemicals of Guizhou University , Guiyang , 550025 , China
- College of Pharmacy , East China University of Science & Technology , Shanghai , China 200237
| |
Collapse
|
17
|
Chen J, Gan X, Yi C, Wang S, Yang Y, He F, Hu D, Song B. Synthesis, Nematicidal Activity, and 3D-QSAR of Novel 1,3,4-Oxadiazole/ Thiadiazole Thioether Derivatives. CHINESE J CHEM 2018. [DOI: 10.1002/cjoc.201800282] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Jixiang Chen
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals; Guizhou University; Guiyang 550025 China
| | - Xiuhai Gan
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals; Guizhou University; Guiyang 550025 China
| | - Chongfen Yi
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals; Guizhou University; Guiyang 550025 China
| | - Shaobo Wang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals; Guizhou University; Guiyang 550025 China
| | - Yuyuan Yang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals; Guizhou University; Guiyang 550025 China
| | - Fangcheng He
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals; Guizhou University; Guiyang 550025 China
| | - Deyu Hu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals; Guizhou University; Guiyang 550025 China
| | - Baoan Song
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals; Guizhou University; Guiyang 550025 China
| |
Collapse
|
18
|
Synthesis of 2-Amino-1,3,4-oxadiazoles through Elemental Sulfur Promoted Cyclization of Hydrazides with Isocyanides. CHINESE J CHEM 2017. [DOI: 10.1002/cjoc.201700188] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|