1
|
Yu W, Zhou Y, Zhao Y, Bai W. Syntheses and characterizations of rhenaindole complexes. Polyhedron 2023. [DOI: 10.1016/j.poly.2023.116359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
|
2
|
Luo M, Cai Y, Lin X, Long L, Zhang H, Xia H. Synthesis, Characterization, and Reactivity of Metalla‐Chalcogenirenium Compounds
†. CHINESE J CHEM 2021. [DOI: 10.1002/cjoc.202000745] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Ming Luo
- Shenzhen Grubbs Institute and Guangdong Provincial Key Laboratory of Catalysis, Department of Chemistry, Southern University of Science and Technology Shenzhen Guangdong 518055 China
| | - Yapeng Cai
- College of Chemistry and Chemical Engineering, Xiamen University Xiamen Fujian 361005 China
| | - Xinlei Lin
- College of Chemistry and Chemical Engineering, Xiamen University Xiamen Fujian 361005 China
| | - Lipeng Long
- College of Chemistry and Chemical Engineering, Xiamen University Xiamen Fujian 361005 China
| | - Hong Zhang
- College of Chemistry and Chemical Engineering, Xiamen University Xiamen Fujian 361005 China
| | - Haiping Xia
- Shenzhen Grubbs Institute and Guangdong Provincial Key Laboratory of Catalysis, Department of Chemistry, Southern University of Science and Technology Shenzhen Guangdong 518055 China
- College of Chemistry and Chemical Engineering, Xiamen University Xiamen Fujian 361005 China
| |
Collapse
|
3
|
Shek HL, Yeung CF, Chung LH, Wong CY. A focused review on the unconventional alkyne activations by ruthenium(II) and osmium(II) complexes supported by 1,2-bis(diphenylphosphino)methane (dppm). Polyhedron 2021. [DOI: 10.1016/j.poly.2021.115023] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
4
|
Tse SKS, Sung HHY, Williams ID, Jia G. Vinylidene, allenylidene, cyclic oxycarbene, and η 2-alkyne complexes from reactions of (η 5-C 5Me 5)OsCl(PPh 3) 2 with alkynes and alkynols. CAN J CHEM 2021. [DOI: 10.1139/cjc-2020-0320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Reactions of Cp*OsCl(PPh3)2 (Cp* = pentamethylcyclopentadienyl) with alkynes and alkynols are described. Treatment of Cp*OsCl(PPh3)2 with phenylacetylene and trimethylsilylacetylene gave the vinylidene complexes Cp*OsCl(=C=CHPh)(PPh3) and Cp*OsCl(=C=CH2)(PPh3), respectively. Treatment of Cp*OsCl(PPh3)2 with the internal alkyne dimethyl acetylenedicarboxylate produced the η2-alkyne complex Cp*OsCl(η2-MeO2C≡CCO2Me)(PPh3). Treatment of Cp*OsCl(PPh3)2 with the propargylic alcohol HC≡CC(OH)Ph2 gave the osmium allenylidene complex Cp*OsCl(=C = C=CPh2)(PPh3). The outcomes of the reactions of Cp*OsCl(PPh3)2 with ω-alkynols HC≡C(CH2)nOH are dependent on the length of the -(CH2)n- linker. The reaction with 3-butyn-1-ol produced the cyclic oxycarbene complex Cp*OsCl{=C(CH2)3O}(PPh3) exclusively. The reactions with 4-pentyn-1-ol produced a mixture of the hydroxyalkyl vinylidene complex Cp*OsCl{=C=CH(CH2)3OH}(PPh3) and the cyclic oxycarbene complex Cp*OsCl{=C(CH2)4O}(PPh3) in about 10:1 molar ratio. The reaction with 5-hexyn-1-ol gave exclusively the hydroxyalkyl vinylidene complex Cp*OsCl{=C=CH(CH2)4OH}(PPh3).
Collapse
Affiliation(s)
- Sunny Kai San Tse
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Herman Ho-Yung Sung
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Ian Duncan Williams
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Guochen Jia
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| |
Collapse
|
5
|
Wei W, Jia G. Metal-Carbon Bonds of Heavier Group 7 and 8 Metals (Tc, Re, Ru, Os): Mononuclear Tc/Re/Ru/Os Complexes With Metal-Carbon Bonds. COMPREHENSIVE COORDINATION CHEMISTRY III 2021:123-439. [DOI: 10.1016/b978-0-08-102688-5.00049-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
6
|
Lin X, Xie W, Lin Q, Cai Y, Hua Y, Lin J, He G, Chen J. NIR-responsive metal-containing polymer hydrogel for light-controlled microvalve. Polym Chem 2021. [DOI: 10.1039/d1py00404b] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
NIR-responsive metal-containing polymer hydrogel was prepared via the radical copolymerization of N-isopropylacrylamide and an osmium aromatic complex. It has excellent photothermal property and can be used as a light-controlled microvalve.
Collapse
Affiliation(s)
- Xusheng Lin
- Department of Materials Science and Engineering
- College of Materials
- Xiamen University
- Xiamen
- People's Republic of China
| | - Weiwei Xie
- Department of Materials Science and Engineering
- College of Materials
- Xiamen University
- Xiamen
- People's Republic of China
| | - Qin Lin
- Department of Materials Science and Engineering
- College of Materials
- Xiamen University
- Xiamen
- People's Republic of China
| | - Yuanting Cai
- College of Chemistry and Chemical Engineering
- Xiamen University
- Xiamen
- People's Republic of China
| | - Yuhui Hua
- College of Chemistry and Chemical Engineering
- Xiamen University
- Xiamen
- People's Republic of China
| | - Jianfeng Lin
- College of Chemistry and Chemical Engineering
- Xiamen University
- Xiamen
- People's Republic of China
| | - Guomei He
- Department of Materials Science and Engineering
- College of Materials
- Xiamen University
- Xiamen
- People's Republic of China
| | - Jiangxi Chen
- Department of Materials Science and Engineering
- College of Materials
- Xiamen University
- Xiamen
- People's Republic of China
| |
Collapse
|
7
|
Chu Z, He G, Cheng X, Deng Z, Chen J. Synthesis and Characterization of Cyclopropaosmanaphthalenes Containing a Fused σ-Aromatic Metallacyclopropene Unit. Angew Chem Int Ed Engl 2019; 58:9174-9178. [PMID: 31056849 DOI: 10.1002/anie.201904815] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Indexed: 12/21/2022]
Abstract
Metalla-aromatics are important complexes that show unique properties owing to their highly conjugated systems, which show Hückel or Möbius aromaticity. Recently, several metalla-aromatics showing spiro-aromaticity or σ-aromaticity have been reported. Herein, we report the isolation of the first cyclopropametallanaphthalenes, in which the metallacyclopropene ring shows σ-aromaticity and weak hyperconjugative aromaticity. The reaction of OsCl2 (PPh3 )3 with o-ethynylphenyl alkynes in the presence of PPh3 followed by protonation with HCl yielded the first cyclopropametallanaphthalenes. The reaction mechanism and the aromaticity were also investigated by density functional theory studies.
Collapse
Affiliation(s)
- Zhenwei Chu
- Department of Materials Science and Engineering, College of Materials, Xiamen University, Xiamen, 361005, P. R. China
| | - Guomei He
- Department of Materials Science and Engineering, College of Materials, Xiamen University, Xiamen, 361005, P. R. China
| | - Xiaoli Cheng
- Department of Materials Science and Engineering, College of Materials, Xiamen University, Xiamen, 361005, P. R. China
| | - Zhirong Deng
- Department of Materials Science and Engineering, College of Materials, Xiamen University, Xiamen, 361005, P. R. China
| | - Jiangxi Chen
- Department of Materials Science and Engineering, College of Materials, Xiamen University, Xiamen, 361005, P. R. China
| |
Collapse
|
8
|
Chu Z, He G, Cheng X, Deng Z, Chen J. Synthesis and Characterization of Cyclopropaosmanaphthalenes Containing a Fused σ‐Aromatic Metallacyclopropene Unit. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201904815] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Zhenwei Chu
- Department of Materials Science and EngineeringCollege of MaterialsXiamen University Xiamen 361005 P. R. China
| | - Guomei He
- Department of Materials Science and EngineeringCollege of MaterialsXiamen University Xiamen 361005 P. R. China
| | - Xiaoli Cheng
- Department of Materials Science and EngineeringCollege of MaterialsXiamen University Xiamen 361005 P. R. China
| | - Zhirong Deng
- Department of Materials Science and EngineeringCollege of MaterialsXiamen University Xiamen 361005 P. R. China
| | - Jiangxi Chen
- Department of Materials Science and EngineeringCollege of MaterialsXiamen University Xiamen 361005 P. R. China
| |
Collapse
|
9
|
Li J, Kang H, Zhuo K, Zhuo Q, Zhang H, Lin YM, Xia H. Alternation of Metal-Bridged Metallacycle Skeletons: From Ruthenapentalyne to Ruthenapentalene and Ruthenaindene Derivative. CHINESE J CHEM 2018. [DOI: 10.1002/cjoc.201800362] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Jinhua Li
- Department of Chemistry, College of Chemistry and Chemical Engineering; Xiamen University; Xiamen Fujian 361005 China
| | - Huijun Kang
- Department of Chemistry, College of Chemistry and Chemical Engineering; Xiamen University; Xiamen Fujian 361005 China
| | - Kaiyue Zhuo
- Department of Chemistry, College of Chemistry and Chemical Engineering; Xiamen University; Xiamen Fujian 361005 China
| | - Qingde Zhuo
- Department of Chemistry, College of Chemistry and Chemical Engineering; Xiamen University; Xiamen Fujian 361005 China
| | - Hong Zhang
- Department of Chemistry, College of Chemistry and Chemical Engineering; Xiamen University; Xiamen Fujian 361005 China
| | - Yu-Mei Lin
- Department of Chemistry, College of Chemistry and Chemical Engineering; Xiamen University; Xiamen Fujian 361005 China
| | - Haiping Xia
- Department of Chemistry, College of Chemistry and Chemical Engineering; Xiamen University; Xiamen Fujian 361005 China
| |
Collapse
|
10
|
Hua Y, Lan Q, Fei J, Tang C, Lin J, Zha H, Chen S, Lu Y, Chen J, He X, Xia H. Metallapentalenofuran: Shifting Metallafuran Rings Promoted by Substituent Effects. Chemistry 2018; 24:14531-14538. [DOI: 10.1002/chem.201802928] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Indexed: 01/15/2023]
Affiliation(s)
- Yuhui Hua
- State Key Laboratory of Physical Chemistry of Solid Surfaces, and; Collaborative Innovation Center of Chemistry for Energy Materials (iChEM); College of Chemistry and Chemical Engineering; Xiamen University; Xiamen 361005 China
| | - Qing Lan
- State Key Laboratory of Physical Chemistry of Solid Surfaces, and; Collaborative Innovation Center of Chemistry for Energy Materials (iChEM); College of Chemistry and Chemical Engineering; Xiamen University; Xiamen 361005 China
| | - Jiawei Fei
- State Key Laboratory of Physical Chemistry of Solid Surfaces, and; Collaborative Innovation Center of Chemistry for Energy Materials (iChEM); College of Chemistry and Chemical Engineering; Xiamen University; Xiamen 361005 China
| | - Chun Tang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, and; Collaborative Innovation Center of Chemistry for Energy Materials (iChEM); College of Chemistry and Chemical Engineering; Xiamen University; Xiamen 361005 China
| | - Jianfeng Lin
- State Key Laboratory of Physical Chemistry of Solid Surfaces, and; Collaborative Innovation Center of Chemistry for Energy Materials (iChEM); College of Chemistry and Chemical Engineering; Xiamen University; Xiamen 361005 China
| | - Hexukun Zha
- State Key Laboratory of Physical Chemistry of Solid Surfaces, and; Collaborative Innovation Center of Chemistry for Energy Materials (iChEM); College of Chemistry and Chemical Engineering; Xiamen University; Xiamen 361005 China
| | - Shiyan Chen
- State Key Laboratory of Physical Chemistry of Solid Surfaces, and; Collaborative Innovation Center of Chemistry for Energy Materials (iChEM); College of Chemistry and Chemical Engineering; Xiamen University; Xiamen 361005 China
| | - Yinghua Lu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, and; Collaborative Innovation Center of Chemistry for Energy Materials (iChEM); College of Chemistry and Chemical Engineering; Xiamen University; Xiamen 361005 China
| | - Jiangxi Chen
- Department of Materials Science and Engineering; College of Materials; Xiamen University; Xiamen 361005 China
| | - Xumin He
- State Key Laboratory of Physical Chemistry of Solid Surfaces, and; Collaborative Innovation Center of Chemistry for Energy Materials (iChEM); College of Chemistry and Chemical Engineering; Xiamen University; Xiamen 361005 China
| | - Haiping Xia
- State Key Laboratory of Physical Chemistry of Solid Surfaces, and; Collaborative Innovation Center of Chemistry for Energy Materials (iChEM); College of Chemistry and Chemical Engineering; Xiamen University; Xiamen 361005 China
| |
Collapse
|