1
|
Wu Z, Xia Z, Tang Z, Li J, Liu W. Mutasynthesis generates nine new pyrroindomycins. Org Biomol Chem 2024; 22:2813-2818. [PMID: 38511276 DOI: 10.1039/d4ob00239c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
Pyrroindomycins (PYRs) represent the only spirotetramate natural products discovered in nature, and possess potent activities against methicillin-resistant Staphylococcus aureus and vancomycin-resistant Enterococcus faecium. Their unique structure and impressive biological activities make them attractive targets for synthesis and biosynthesis; however, the discovery and generation of new PYRs remains challenging. To date, only the initial components A and B have been reported. Herein, we report a mutasynthesis approach for the generation of nine new PYRs with varying acyl modifications on their deoxy-trisaccharide moieties. This was achieved by blocking the formation of the acyl group 1,8-dihydropyrrolo[2,3-b]indole (DHPI) via gene pyrK1 inactivation and supplying chemical acyl precursors. The gene pyrK1 encodes a DUF1864 family protein that probably catalyzes the oxidative transformation of L-tryptophan to DHPI, and its deletion results in the abolishment of DHPI-containing PYRs and the accumulation of three new PYRs either without acyl modification or with DHPI replaced by benzoic acid and pyrrole-2-carboxylic acid. Capitalizing on the capacity of the ΔpyrK1 mutant to produce new PYRs, we have successfully developed a mutasynthesis strategy for the generation of six novel PYR analogs with various aromatic acid modifications on their deoxy-trisaccharide moieties, showcasing the potential for generating structurally diverse PYRs. Overall, this research contributes significantly to understanding the biosynthesis of PYRs and offers valuable perspectives on their structural diversity.
Collapse
Affiliation(s)
- Zhuhua Wu
- National key Laboratory of Lead druggability Research, Shanghai Institute of Pharmaceutical Industry, China State Institute of Pharmaceutical Industry, 285 Copernicus Road, Shanghai 201203, China.
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China.
| | - Zhengxiang Xia
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China.
- Department of Pharmacy, Stomatological Hospital and Dental School of Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, 399 Middle Yan Chang Road, Shanghai, 200072, China
| | - Zhijun Tang
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China.
| | - Ji'an Li
- National key Laboratory of Lead druggability Research, Shanghai Institute of Pharmaceutical Industry, China State Institute of Pharmaceutical Industry, 285 Copernicus Road, Shanghai 201203, China.
| | - Wen Liu
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China.
| |
Collapse
|
2
|
Yñigez-Gutierrez AE, Wurm JE, Froese JT, Rosenthal NE, Bachmann BO. Characterization of Dichloroisoeverninic Acid Biosynthesis and Chemoenzymatic Synthesis of New Orthosomycins. ACS Chem Biol 2024; 19:526-535. [PMID: 38289021 DOI: 10.1021/acschembio.3c00693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
The orthosomycins are highly modified oligosaccharide natural products with a broad spectrum and potent antimicrobial activities. These include everninomicins and avilamycins, which inhibit protein translation by binding a unique site on the bacterial ribosome. Notably, ribosomal bound structures reveal a network of interactions between the 50S subunit and dichloroisoeverninic acid (DCIE), the aromatic A1-ring conserved across orthosomycins, but the relationship of these interactions to their antimicrobial activity remains undetermined. Genetic functional analysis of three genes putatively associated with DCIE biosynthesis in the everninomicin producer Micromonospora carbonacea delineates the native biosynthetic pathway and provides previously unreported advanced biosynthetic intermediates. Subsequent in vitro biochemical analyses demonstrate the complete DCIE biosynthetic pathway and provide access to novel everninomicin analogs. In addition to the orsellinate synthase EvdD3 and a flavin-dependent halogenase EvdD2, our results identified a key acyltransferase, EvdD1, responsible for transferring orsellinate from the acyl carrier protein domain of EvdD3 to a heptasaccharide orthosomycin biosynthetic intermediate. We have also shown that EvdD1 is able to transfer unnatural aryl groups via their N-acyl cysteamine thioesters to the everninomicin scaffold and used this as a biocatalyst to generate a panel of unnatural aryl analogs. The impact of diverse aryl functional group substitution on both ribosome inhibition and antibacterial activities demonstrates the importance of the DCIE moiety in the pharmacology of orthosomycins, notably revealing an uncoupling between ribosomal engagement and antibiotic activity. Control of A1-ring functionality in this class of molecules provides a potential handle to explore and address pharmacological roles of the DCIE ring in this potent and unique class of antibiotics.
Collapse
Affiliation(s)
| | - Jennifer E Wurm
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37235, United States
- Chemical and Physical Biology Graduate Program, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Jordan T Froese
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Nicholas E Rosenthal
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Brian O Bachmann
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37235, United States
| |
Collapse
|
3
|
Saeed AU, Rahman MU, Chen HF, Zheng J. Structural Insight of KSIII (β-Ketoacyl-ACP Synthase)-like Acyltransferase ChlB3 in the Biosynthesis of Chlorothricin. Molecules 2022; 27:molecules27196405. [PMID: 36234941 PMCID: PMC9573744 DOI: 10.3390/molecules27196405] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 09/07/2022] [Accepted: 09/23/2022] [Indexed: 11/16/2022] Open
Abstract
Chlorothricin (CHL) belongs to a spirotetronate antibiotic family produced by Streptomyces antibioticus that inhibits pyruvate carboxylase and malate dehydrogenase. For the biosynthesis of CHL, ChlB3 plays a crucial role by introducing the 6-methylsalicylic acid (6MSA) moiety to ChlB2, an acyl carrier protein (ACP). However, the structural insight and catalytic mechanism of ChlB3 was unclear. In the current study, the crystal structure of ChlB3 was solved at 3.1 Å-resolution and a catalytic mechanism was proposed on the basis of conserved residues of structurally related enzymes. ChlB3 is a dimer having the same active sites as CerJ (a structural homologous enzyme) and uses a KSIII-like fold to work as an acyltransferase. The relaxed substrate specificity of ChlB3 was defined by its catalytic efficiencies (kcat/Km) for non-ACP tethered synthetic substrates such as 6MSA-SNAC, acetyl-SNAC, and cyclohexonyl-SNAC. ChlB3 successfully detached the 6MSA moiety from 6MSA-SNAC substrate and this hydrolytic activity demonstrated that ChlB3 has the potential to catalyze non-ACP tethered substrates. Structural comparison indicated that ChlB3 belongs to FabH family and showed 0.6–2.5 Å root mean square deviation (RMSD) with structural homologous enzymes. Molecular docking and dynamics simulations were implemented to understand substrate active site and structural behavior such as the open and closed conformation of the ChlB3 protein. The resultant catalytic and substrate recognition mechanism suggested that ChlB3 has the potential to use non-native substrates and minimize the labor of expressing ACP protein. This versatile acyltransferase activity may pave the way for manufacturing CHL variants and may help to hydrolyze several thioester-based compounds.
Collapse
Affiliation(s)
- Asad Ullah Saeed
- State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Mueed Ur Rahman
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, Department of Bioinformatics and Biostatistics, National Experimental Teaching Center for Life Sciences and Biotechnology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Hai-Feng Chen
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, Department of Bioinformatics and Biostatistics, National Experimental Teaching Center for Life Sciences and Biotechnology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
- Shanghai Center for Bioinformation Technology, Shanghai 200235, China
| | - Jianting Zheng
- State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University, Shanghai 200240, China
- Correspondence:
| |
Collapse
|
4
|
Yan X, Zhang J, Tan H, Liu Z, Jiang K, Tian W, Zheng M, Lin Z, Deng Z, Qu X. A Pair of Atypical KAS III Homologues with Initiation and Elongation Functions Program the Polyketide Biosynthesis in Asukamycin. Angew Chem Int Ed Engl 2022; 61:e202200879. [DOI: 10.1002/anie.202200879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Indexed: 11/06/2022]
Affiliation(s)
- Xiaoli Yan
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery Ministry of Education School of Pharmaceutical Sciences Wuhan University 1 Luojiashan Rd. Wuhan 430071 China
- State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology Shanghai Jiao Tong University 800 Dongchuan Rd. Shanghai 200240 China
| | - Jun Zhang
- State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology Shanghai Jiao Tong University 800 Dongchuan Rd. Shanghai 200240 China
| | - Hongqun Tan
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery Ministry of Education School of Pharmaceutical Sciences Wuhan University 1 Luojiashan Rd. Wuhan 430071 China
| | - Zhihao Liu
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery Ministry of Education School of Pharmaceutical Sciences Wuhan University 1 Luojiashan Rd. Wuhan 430071 China
| | - Kai Jiang
- State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology Shanghai Jiao Tong University 800 Dongchuan Rd. Shanghai 200240 China
| | - Wenya Tian
- State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology Shanghai Jiao Tong University 800 Dongchuan Rd. Shanghai 200240 China
| | - Mengmeng Zheng
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery Ministry of Education School of Pharmaceutical Sciences Wuhan University 1 Luojiashan Rd. Wuhan 430071 China
| | - Zhi Lin
- State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology Shanghai Jiao Tong University 800 Dongchuan Rd. Shanghai 200240 China
| | - Zixin Deng
- State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology Shanghai Jiao Tong University 800 Dongchuan Rd. Shanghai 200240 China
| | - Xudong Qu
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery Ministry of Education School of Pharmaceutical Sciences Wuhan University 1 Luojiashan Rd. Wuhan 430071 China
- State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology Shanghai Jiao Tong University 800 Dongchuan Rd. Shanghai 200240 China
| |
Collapse
|
5
|
Yan X, Zhang J, Tan H, Liu Z, Jiang K, Tian W, Zheng M, Lin Z, Deng Z, Qu X. A Pair of Atypical KAS III Homologues with Initiation and Elongation Functions Program the Polyketide Biosynthesis in Asukamycin. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202200879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Xiaoli Yan
- Wuhan University School of pharmaceutical Sciences CHINA
| | - Jun Zhang
- Shanghai Jiao Tong University School of Life Sciences and Biotechnology CHINA
| | - Hongqun Tan
- Wuhan University School of Pharmaceutical Sciences CHINA
| | - Zhihao Liu
- Wuhan University School of pharmaceutical Sciences CHINA
| | - Kai Jiang
- Shanghai Jiao Tong University School of Life Sciences and Biotechnology CHINA
| | - Wenya Tian
- Shanghai Jiao Tong University School of Life Sciences and Biotechnology CHINA
| | - Mengmeng Zheng
- Wuhan University School of Pharmaceutical Sciences CHINA
| | - Zhi Lin
- Shanghai Jiao Tong University School of Life Sciences and Biotechnology CHINA
| | - Zixin Deng
- Shanghai Jiao Tong University School of Life Sciences and Biotechnology CHINA
| | - Xudong Qu
- Shanghai Jiao Tong University School of Life Sciences and Biotechnology 800 Dongchuan Rd. 200240 Shanghai CHINA
| |
Collapse
|
6
|
Tong L, Zhao Q, Datan E, Lin GQ, Minn I, Pomper MG, Yu B, Romo D, He QL, Liu JO. Triptolide: reflections on two decades of research and prospects for the future. Nat Prod Rep 2021; 38:843-860. [PMID: 33146205 DOI: 10.1039/d0np00054j] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Covering: 2000 to 2020 Triptolide is a bioactive diterpene triepoxide isolated from Tripterygium wilfordii Hook F, a traditional Chinese medicinal plant whose extracts have been used as anti-inflammatory and immunosuppressive remedies for centuries. Although triptolide and its analogs exhibit potent bioactivities against various cancers, and inflammatory and autoimmune diseases, none of them has been approved to be used in the clinic. This review highlights advances in material sourcing, molecular mechanisms, clinical progress and new drug design strategies for triptolide over the past two decades, along with some prospects for the future course of development of triptolide.
Collapse
Affiliation(s)
- Lu Tong
- The Research Center of Chiral Drugs, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China.
| | - Qunfei Zhao
- The Research Center of Chiral Drugs, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China.
| | - Emmanuel Datan
- Department of Pharmacology, Johns Hopkins School of Medicine, 725 North Wolfe Street, Hunterian Building, Room 516, Baltimore, MD 21205, USA.
| | - Guo-Qiang Lin
- The Research Center of Chiral Drugs, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China. and CAS Key Laboratory of Synthetic Chemistry of Natural Substances, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Il Minn
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Martin G Pomper
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Biao Yu
- State Key Laboratory of Bio-organic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Daniel Romo
- Department of Chemistry and Biochemistry, The CPRIT Synthesis and Drug Lead Discovery Laboratory, Baylor University, Waco, Texas 76710, USA
| | - Qing-Li He
- The Research Center of Chiral Drugs, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China.
| | - Jun O Liu
- Department of Pharmacology, Johns Hopkins School of Medicine, 725 North Wolfe Street, Hunterian Building, Room 516, Baltimore, MD 21205, USA.
| |
Collapse
|
7
|
Li Y, Zhang J, Zheng J, Guan H, Liu W, Tan H. Co-expression of a SARP Family Activator ChlF2 and a Type II Thioesterase ChlK Led to High Production of Chlorothricin in Streptomyces antibioticus DSM 40725. Front Bioeng Biotechnol 2020; 8:1013. [PMID: 32974326 PMCID: PMC7471628 DOI: 10.3389/fbioe.2020.01013] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 08/03/2020] [Indexed: 11/20/2022] Open
Abstract
Chlorothricin (CHL), produced by Streptomyces antibioticus DSM 40725 (wild-type strain, WT), belongs to a growing family of spirotetronate antibiotics that have biological activities inhibiting pyruvate carboxylase and malate dehydrogenase. ChlF2, a cluster-situated SARP regulator, can activate the transcription of chlJ, chlC3, chlC6, chlE1, chlM, and chlL to control CHL biosynthesis. Co-expression of chlF2 and chlK encoding type II thioesterase in WT strain under the control of Pkan led to high production of chlorothricin by 840% in comparison with that of WT. Since the inhibitory activity of CHL against several Gram-positive bacteria is higher than des-CHL, combinatorial strategies were applied to promote the conversion of des-CHL to CHL. Over-expression of chlB4, encoding a halogenase, combining with the supplementation of sodium chloride led to further 41% increase of CHL production compared to that of F2OE, a chlF2 over-expression strain. These findings provide new insights into the fine-tuned regulation of spirotetronate family of antibiotics and the construction of high-yield engineered strains.
Collapse
Affiliation(s)
- Yue Li
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Jihui Zhang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Jiazhen Zheng
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Hanye Guan
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Wen Liu
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
| | - Huarong Tan
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
8
|
Yi JC, Wu ZJ, You SL. Rh-Catalyzed Aminative Dearomatization of Naphthols with Hydroxylamine-O
-Sulfonic Acid (HOSA). European J Org Chem 2019. [DOI: 10.1002/ejoc.201900917] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Ji-Cheng Yi
- State Key Laboratory of Organometallic Chemistry; Center for Excellence in Molecular Synthesis; Shanghai Institute of Organic Chemistry, Chinese Academy of Science; 345 Lingling Lu 200032 Shanghai China
- Center for Excellence in Molecular Synthesis; School of Physical Science and Technology; 100 Haike Road 201210 Shanghai China
| | - Zhi-Jie Wu
- State Key Laboratory of Organometallic Chemistry; Center for Excellence in Molecular Synthesis; Shanghai Institute of Organic Chemistry, Chinese Academy of Science; 345 Lingling Lu 200032 Shanghai China
- Center for Excellence in Molecular Synthesis; School of Physical Science and Technology; 100 Haike Road 201210 Shanghai China
| | - Shu-Li You
- State Key Laboratory of Organometallic Chemistry; Center for Excellence in Molecular Synthesis; Shanghai Institute of Organic Chemistry, Chinese Academy of Science; 345 Lingling Lu 200032 Shanghai China
- Center for Excellence in Molecular Synthesis; School of Physical Science and Technology; 100 Haike Road 201210 Shanghai China
| |
Collapse
|