1
|
Wang Y, Wang L, Han J. Photoinduced Vicinal Difunctionalization of Diaryliodonium Salts To Access Bis(tetraphenylphosphonium) Salts. Org Lett 2025; 27:1012-1017. [PMID: 39836879 DOI: 10.1021/acs.orglett.4c04635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2025]
Abstract
Vicinal bis(tetraarylphosphonium) salts have scarcely been reported in the literature. In this study, we demonstrate that visible-light-induced difunctionalization of ortho-trifluoromethylsulfonylated diaryliodonium salts conveniently furnishes bis(phosphonium) salts without additional catalysts or photoinitiators. The methodology establishes a practical platform for the preparation of bis(phosphonium) salts using readily available tertiary phosphines. The bis(tetraarylphosphonium) salts are anticipated to garner a great deal of interest in catalytic and medicinal chemistry.
Collapse
Affiliation(s)
- Yu Wang
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals, School of Chemistry & Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, People's Republic of China
| | - Limin Wang
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals, School of Chemistry & Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, People's Republic of China
| | - Jianwei Han
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals, School of Chemistry & Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, People's Republic of China
| |
Collapse
|
2
|
Wang Y, Wang Y, Du X, Zheng K, Zhai S, Bai S, Fang L, Zhang T. Catalytic Enantioselective Propargylation of Pyrazolones by Amide-Based Phase-Transfer Catalysts. Org Lett 2024; 26:7318-7323. [PMID: 39185762 DOI: 10.1021/acs.orglett.4c02441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
In this paper, we developed a highly enantioselective alkylation of 4-substituted pyrazolones catalyzed by phase-transfer catalysis. Cheap halohydrocarbons were employed as electrophilic alkylationg agents, and propargyl, allyl, and benzyl products with all-carbon quaternary stereocenters were afforded with excellent enantioselectivities and good yields. We found that the unique structures of the catalyst (hydrogen bond donors of the C-9 hydroxyl group and amide group, the triphenyl at the NH-position) were important for good enantioselectivity. Furthermore, chiral propargyl products could be easily connected to azide molecules by click cycloaddition, which offers unique opportunities to obtain structurally diverse chiral pyrazolones.
Collapse
Affiliation(s)
- Yakun Wang
- School of Pharmacy, Xinxiang Medical University, Xinxiang, Henan 453003, P.R. China
| | - Yingying Wang
- School of Pharmacy, Xinxiang Medical University, Xinxiang, Henan 453003, P.R. China
| | - Xiaoyu Du
- School of Pharmacy, Xinxiang Medical University, Xinxiang, Henan 453003, P.R. China
| | - Kaiting Zheng
- School of Pharmacy, Xinxiang Medical University, Xinxiang, Henan 453003, P.R. China
| | - Shuman Zhai
- School of Pharmacy, Xinxiang Medical University, Xinxiang, Henan 453003, P.R. China
| | - Suping Bai
- School of Pharmacy, Xinxiang Medical University, Xinxiang, Henan 453003, P.R. China
| | - Lizhen Fang
- School of Pharmacy, Xinxiang Medical University, Xinxiang, Henan 453003, P.R. China
| | - Tao Zhang
- School of Pharmacy, Xinxiang Medical University, Xinxiang, Henan 453003, P.R. China
| |
Collapse
|
3
|
Liu J, Feng Z, Li H, Yu Z, Wang H, Tang B. Efficient late-stage synthesis of quaternary phosphonium salts from organothianthrenium salts via photocatalysis. Chem Commun (Camb) 2024. [PMID: 39073349 DOI: 10.1039/d4cc02515f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Quaternary phosphonium salts (QPS) are significant structural motifs in drugs, materials, and catalysts. Here, a photoactivated approach for the selective late-stage synthesis of QPS utilizing organothianthrenium salts and tertiary phosphines is presented with high yields and broad functional group compatibility. Additionally, the synthetic utility of this protocol is demonstrated by in situ generation of QPS via C-H functionalization and its fluorescence confocal imaging of mitochondrial localization in cells.
Collapse
Affiliation(s)
- Jun Liu
- Key Laboratory of Marine Drugs, Ministry of Education; Molecular Synthesis Center, and School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, P. R. China.
- Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao, 266237, P. R. China
| | - Zhaoyu Feng
- Key Laboratory of Marine Drugs, Ministry of Education; Molecular Synthesis Center, and School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, P. R. China.
- Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao, 266237, P. R. China
| | - Hanxiang Li
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, P. R. China.
| | - Zhengze Yu
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, P. R. China.
| | - Hongyu Wang
- Key Laboratory of Marine Drugs, Ministry of Education; Molecular Synthesis Center, and School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, P. R. China.
- Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao, 266237, P. R. China
| | - Bo Tang
- Laoshan Laboratory, Qingdao 266237, P. R. China
| |
Collapse
|
4
|
Luo X, Jiang Z, Yang S, Ren X, Wang T. Organocatalyzed Asymmetric Conjugate Addition of Alcohols to β-Fluoroalkyl Vinylsulfones by Bifunctional Phosphonium Salt Catalyst. Chemistry 2024; 30:e202401325. [PMID: 38698535 DOI: 10.1002/chem.202401325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 04/28/2024] [Accepted: 05/02/2024] [Indexed: 05/05/2024]
Abstract
Chiral secondary alcohols, serving as essential structural motifs, hold significant potential for diverse applications. The exploration of effective synthetic strategies toward these compounds is both attractive and challenging. Herein, we present an asymmetric oxa-Michael reaction involving aliphatic alcohols as nucleophiles and β-fluoroalkyl vinylsulfones catalyzed by bifunctional phosphonium salt (BPS), achieving high yields and excellent enantioselectivities (up to 98 % yield and 98 % ee). Additionally, a sequential process including asymmetric oxa-Michael and debenzylation, facilitated by BPS/Lewis acid cooperation, was revealed for synthesizing diverse chiral secondary alcohol compounds in high yields (81-88 %) with consistent stereoselectivities. Furthermore, mechanistic explorations and subsequent results unveiled that the enantioselectivity originates from hydrogen-bonding and ion-pair interactions between the BPS catalyst and the substrates.
Collapse
Affiliation(s)
- Xingjie Luo
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, 610064, Chengdu, P. R. China
| | - Zhiyu Jiang
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, 610064, Chengdu, P. R. China
| | - Siqun Yang
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, 610064, Chengdu, P. R. China
| | - Xiaoyu Ren
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, 610064, Chengdu, P. R. China
| | - Tianli Wang
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, 610064, Chengdu, P. R. China
- Beijing National Laboratory for Molecular Sciences, 100190, Beijing, P. R. China
| |
Collapse
|
5
|
Fang S, Liu Z, Wang T. Design and Application of Peptide-Mimic Phosphonium Salt Catalysts in Asymmetric Synthesis. Angew Chem Int Ed Engl 2023; 62:e202307258. [PMID: 37408171 DOI: 10.1002/anie.202307258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 07/04/2023] [Accepted: 07/05/2023] [Indexed: 07/07/2023]
Abstract
Chiral phosphonium salt catalysis, traditionally classified as a type of phase transfer catalysis, has proven to be a powerful strategy for the stereoselective preparation of diverse optically active molecules. However, there still remain numerous forbidding issues of reactivity and selectivity in such well-known organocatalysis system. Accordingly, the development of new and high-performance phosphonium salt catalysts with unique chiral backbones is highly desirable, yet challenging. This Minireview describes the prominent endeavours in the development of a new family of chiral peptide-mimic phosphonium salt catalysts with multiple hydrogen-bonding donors and their applications in a plethora of enantioselective synthesis during the past few years. Hopefully, this minireview will pave a way for further developing much more efficient and privileged chiral ligands/catalysts featuring exclusively catalytic ability in asymmetric synthesis.
Collapse
Affiliation(s)
- Siqiang Fang
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu, 610064, P. R. China
| | - Zanjiao Liu
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu, 610064, P. R. China
| | - Tianli Wang
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu, 610064, P. R. China
| |
Collapse
|
6
|
Guo F, Fang S, He J, Su Z, Wang T. Enantioselective organocatalytic synthesis of axially chiral aldehyde-containing styrenes via S NAr reaction-guided dynamic kinetic resolution. Nat Commun 2023; 14:5050. [PMID: 37598233 PMCID: PMC10439945 DOI: 10.1038/s41467-023-40840-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 08/14/2023] [Indexed: 08/21/2023] Open
Abstract
The precise and efficient construction of axially chiral scaffolds, particularly toward the aryl-alkene atropoisomers with impeccably full enantiocontrol and highly structural diversity, remains greatly challenging. Herein, we disclose an organocatalytic asymmetric nucleophilic aromatic substitution (SNAr) reaction of aldehyde-substituted styrenes involving a dynamic kinetic resolution process via a hemiacetal intermediate, offering a novel and facile way to significant axial styrene scaffolds. Upon treatment of the aldehyde-containing styrenes bearing (o-hydroxyl)aryl unit with commonly available fluoroarenes in the presence of chiral peptide-phosphonium salts, the SNAr reaction via an exquisite bridged biaryl lactol intermediate undergoes smoothly to furnish a series of axially chiral aldehyde-containing styrenes decorated with various functionalities and bioactive fragments in high stereoselectivities (up to >99% ee) and complete E/Z selectivities. These resulting structural motifs are important building blocks for the preparation of diverse functionalized axial styrenes, which have great potential as efficient and privileged chiral ligands/catalysts in asymmetric synthesis.
Collapse
Affiliation(s)
- Fengyuan Guo
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu, PR China
| | - Siqiang Fang
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu, PR China
| | - Jiajia He
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu, PR China
| | - Zhishan Su
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu, PR China.
| | - Tianli Wang
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu, PR China.
- Beijing National Laboratory for Molecular Sciences, Beijing, China.
| |
Collapse
|
7
|
Han J, Liu R, Lin Z, Zi W. Stereodivergent Construction of Csp 3 -Csp 3 Bonds Bearing Vicinal Stereocenters by Synergistic Palladium and Phase-Transfer Catalysis. Angew Chem Int Ed Engl 2023; 62:e202215714. [PMID: 36380525 DOI: 10.1002/anie.202215714] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Indexed: 11/18/2022]
Abstract
Synergistic catalysis has emerged as one of the most powerful tools for stereodivergent formation of Csp3 -Csp3 bonds bearing vicinal stereocenters. Despite the many successes that have been achieved in this field, stereodivergent Csp3 -Csp3 coupling reactions involving stabilized nucleophiles remain challenging because of the competing single-catalysis pathway. Herein, we report a synergistic palladium/phase-transfer catalyst system that enables diastereodivergent Csp3 -Csp3 coupling reactions of 1,3-dienes with stabilized nucleophile oxindoles. Both the syn and anti coupling products, bearing quaternary and tertiary vicinal stereocenters, could be selectively produced in good yields with high enantio- and diastereoselectivities. Non-covalent activation of the stabilized nucleophile via chiral ion pair in a biphasic system is a crucial success factor in achieving diastereodivergence.
Collapse
Affiliation(s)
- Jingqiang Han
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Rixin Liu
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Zitong Lin
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Weiwei Zi
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China.,Haihe Laboratory of Sustainable Chemical Transformations, Tianjin, 300071, China
| |
Collapse
|
8
|
Wang Y, Wang S, Wu Y, Zhao T, Liu J, Zheng J, Wang L, Lv J, Zhang T. Fast, highly enantioselective, and sustainable fluorination of 4-substituted pyrazolones catalyzed by amide-based phase-transfer catalysts. Org Chem Front 2023. [DOI: 10.1039/d3qo00269a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
Abstract
Highly enantioselective and sustainable fluorination of 4-substituted pyrazolones has been developed by amide-based phase-transfer catalysts.
Collapse
Affiliation(s)
- Yakun Wang
- School of Pharmacy, Xinxiang Medical University, Xinxiang, Henan 453003, P.R. China
| | - Shuaifei Wang
- School of Pharmacy, Xinxiang Medical University, Xinxiang, Henan 453003, P.R. China
| | - Yufeng Wu
- School of Chemical Engineering, Dalian University of Technology, Dalian, Liaoning 116024, P.R. China
| | - Ting Zhao
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning 117004, P.R. China
| | - Jie Liu
- School of Pharmacy, Xinxiang Medical University, Xinxiang, Henan 453003, P.R. China
| | - Junlin Zheng
- School of Pharmacy, Xinxiang Medical University, Xinxiang, Henan 453003, P.R. China
| | - Lin Wang
- School of Pharmacy, Xinxiang Medical University, Xinxiang, Henan 453003, P.R. China
| | - Jieli Lv
- School of Pharmacy, Xinxiang Medical University, Xinxiang, Henan 453003, P.R. China
| | - Tao Zhang
- School of Pharmacy, Xinxiang Medical University, Xinxiang, Henan 453003, P.R. China
| |
Collapse
|
9
|
Stereodivergently asymmetric synthesis of chiral phosphorus compounds by synergistic combination of ion-pair catalyst and base. Sci China Chem 2022. [DOI: 10.1007/s11426-022-1337-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
10
|
Waser M, Winter M, Mairhofer C. (Thio)urea containing chiral ammonium salt catalysts. CHEM REC 2022:e202200198. [PMID: 36175162 DOI: 10.1002/tcr.202200198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 08/25/2022] [Indexed: 11/08/2022]
Abstract
(Thio)-urea-containing bifunctional quaternary ammonium salts emerged as powerful non-covalently interacting organocatalysts over the course of the last decade. The most commonly employed catalysts in this field are either based on Cinchona alkaloids, α-amino acids, or trans-cyclohexane-1,2-diamine. Our group has been heavily engaged in the design and use of such catalysts, i. e. trans-cyclohexane-1,2-diamine-based ones for around 10 years now, and it is therefore the intention of this short personal account to provide an overview of the, at least in our opinion, most significant and pioneering achievements in this field by looking on catalyst design and asymmetric method development, with a special focus on our own contributions.
Collapse
Affiliation(s)
- Mario Waser
- Institute of Organic Chemistry, Johannes Kepler University Linz, Altenbergerstrasse 69, 4040, Linz, Austria
| | - Michael Winter
- Institute of Organic Chemistry, Johannes Kepler University Linz, Altenbergerstrasse 69, 4040, Linz, Austria
| | - Christopher Mairhofer
- Institute of Organic Chemistry, Johannes Kepler University Linz, Altenbergerstrasse 69, 4040, Linz, Austria
| |
Collapse
|
11
|
Chen Y, He J, Zhuang C, Liu Z, Xiao K, Su Z, Ren X, Wang T. Synergistic Catalysis between a Dipeptide Phosphonium Salt and a Metal‐Based Lewis Acid for Asymmetric Synthesis of
N
‐Bridged [3.2.1] Ring Systems. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202207334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Yuan Chen
- Key Laboratory of Green Chemistry & Technology of Ministry of Education College of Chemistry Sichuan University 29 Wangjiang Road Chengdu 610064 P. R. China
| | - Jiajia He
- Key Laboratory of Green Chemistry & Technology of Ministry of Education College of Chemistry Sichuan University 29 Wangjiang Road Chengdu 610064 P. R. China
| | - Cheng Zhuang
- National Chengdu Center for Safety Evaluation of Drugs and National Clinical Research Center for Geriatrics West China Hospital Sichuan University Chengdu 610041 P. R. China
| | - Zanjiao Liu
- Key Laboratory of Green Chemistry & Technology of Ministry of Education College of Chemistry Sichuan University 29 Wangjiang Road Chengdu 610064 P. R. China
| | - Kai Xiao
- National Chengdu Center for Safety Evaluation of Drugs and National Clinical Research Center for Geriatrics West China Hospital Sichuan University Chengdu 610041 P. R. China
| | - Zhishan Su
- Key Laboratory of Green Chemistry & Technology of Ministry of Education College of Chemistry Sichuan University 29 Wangjiang Road Chengdu 610064 P. R. China
| | - Xiaoyu Ren
- Key Laboratory of Green Chemistry & Technology of Ministry of Education College of Chemistry Sichuan University 29 Wangjiang Road Chengdu 610064 P. R. China
| | - Tianli Wang
- Key Laboratory of Green Chemistry & Technology of Ministry of Education College of Chemistry Sichuan University 29 Wangjiang Road Chengdu 610064 P. R. China
| |
Collapse
|
12
|
Zhu L, Peng H, Guo Y, Che J, Wu JH, Su Z, Wang T. Enantioselective Synthesis of Atropisomeric Biaryl Phosphorus Compounds by Chiral-Phosphonium-Salt-Enabled Cascade Arene Formation. Angew Chem Int Ed Engl 2022; 61:e202202467. [PMID: 35548922 DOI: 10.1002/anie.202202467] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Indexed: 01/26/2023]
Abstract
Axially chiral biaryl monophosphorus molecules, exemplified by atropisomeric 1,1'-biaryl aminophosphines, are significant motifs in numerous chiral ligands/catalysts. Developing efficient methods for preparing phosphorus compounds with these privileged motifs is an important endeavor in synthetic chemistry. Herein, we develop an effective, modular method by a chiral-phosphonium-salt-catalyzed novel cascade between phosphorus-containing nitroolefins and α,α-dicyanoolefins, leading to a great diversity of atropisomeric biaryls bearing phosphorus groups in high yields with excellent stereoselectivities. The reaction features include a Thorpe-type cycloaddition/oxidative hydroxylation/aromatization cascade pathway with a central-to-axial chirality transfer process. Insight gained from our studies is expected to advance general efforts towards the catalytic synthesis of atropisomeric biaryl phosphorus compounds, offering a platform for developing new efficient chiral ligands and catalysts.
Collapse
Affiliation(s)
- Lixiang Zhu
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu, 610064, P. R. China
| | - Heling Peng
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu, 610064, P. R. China.,Medical Administration Department, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu, 610072, P. R. China
| | - Yan Guo
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu, 610064, P. R. China
| | - Jixing Che
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu, 610064, P. R. China
| | - Jia-Hong Wu
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu, 610064, P. R. China
| | - Zhishan Su
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu, 610064, P. R. China
| | - Tianli Wang
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu, 610064, P. R. China.,Beijing National Laboratory for Molecular Sciences, Beijing, 100190, P. R. China
| |
Collapse
|
13
|
Chen Y, He J, Zhuang C, Liu Z, Xiao K, Su Z, Ren X, Wang T. Synergistic Catalysis between a Dipeptide Phosphonium Salt and a Metal-Based Lewis Acid for Asymmetric Synthesis of N-Bridged [3.2.1] Ring Systems. Angew Chem Int Ed Engl 2022; 61:e202207334. [PMID: 35766480 DOI: 10.1002/anie.202207334] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Indexed: 02/05/2023]
Abstract
We present an unprecedented synergic catalytic route for the asymmetric construction of fluorinated N-bridged [3.2.1] cyclic members of tropane family via a bifunctional phosphonium salt/silver co-catalyzed cyclization process. A broad variety of substrates bearing an assortment of functional groups are compatible with this method, providing targeted compounds bearing seven-membered ring and four contiguous stereocenters in high yields with excellent stereoselectivities. The gram-scale preparations, facile elaborations and preliminary biological activities of the products demonstrate the application potential. Moreover, both experimental and computational mechanistic studies revealed that the cyclization proceeded via a "sandwich" reaction model with multiple weak-bond cooperative activations. Insights gained from our studies are expected to advance general efforts towards the catalytic synthesis of challenging chiral heterocyclic molecules.
Collapse
Affiliation(s)
- Yuan Chen
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu, 610064, P. R. China
| | - Jiajia He
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu, 610064, P. R. China
| | - Cheng Zhuang
- National Chengdu Center for Safety Evaluation of Drugs and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, P. R. China
| | - Zanjiao Liu
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu, 610064, P. R. China
| | - Kai Xiao
- National Chengdu Center for Safety Evaluation of Drugs and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, P. R. China
| | - Zhishan Su
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu, 610064, P. R. China
| | - Xiaoyu Ren
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu, 610064, P. R. China
| | - Tianli Wang
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu, 610064, P. R. China
| |
Collapse
|
14
|
Zhu L, Peng H, Guo Y, Che J, Wu J, Su Z, Wang T. Enantioselective Synthesis of Atropisomeric Biaryl Phosphorus Compounds by Chiral‐Phosphonium‐Salt‐Enabled Cascade Arene Formation. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202202467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Lixiang Zhu
- Key Laboratory of Green Chemistry & Technology of Ministry of Education College of Chemistry Sichuan University 29 Wangjiang Road Chengdu 610064 P. R. China
| | - Heling Peng
- Key Laboratory of Green Chemistry & Technology of Ministry of Education College of Chemistry Sichuan University 29 Wangjiang Road Chengdu 610064 P. R. China
- Medical Administration Department Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital Chengdu 610072 P. R. China
| | - Yan Guo
- Key Laboratory of Green Chemistry & Technology of Ministry of Education College of Chemistry Sichuan University 29 Wangjiang Road Chengdu 610064 P. R. China
| | - Jixing Che
- Key Laboratory of Green Chemistry & Technology of Ministry of Education College of Chemistry Sichuan University 29 Wangjiang Road Chengdu 610064 P. R. China
| | - Jia‐Hong Wu
- Key Laboratory of Green Chemistry & Technology of Ministry of Education College of Chemistry Sichuan University 29 Wangjiang Road Chengdu 610064 P. R. China
| | - Zhishan Su
- Key Laboratory of Green Chemistry & Technology of Ministry of Education College of Chemistry Sichuan University 29 Wangjiang Road Chengdu 610064 P. R. China
| | - Tianli Wang
- Key Laboratory of Green Chemistry & Technology of Ministry of Education College of Chemistry Sichuan University 29 Wangjiang Road Chengdu 610064 P. R. China
- Beijing National Laboratory for Molecular Sciences Beijing 100190 P. R. China
| |
Collapse
|
15
|
Gu C, Tian G, Yin Q, Wu F, Li Z, Wu X. Amide phosphonium salt catalyzed enantioselective Mannich addition of isoxazole-based nucleophiles to β,γ-alkynyl-α-ketimino esters. Org Biomol Chem 2022; 20:3323-3334. [PMID: 35353110 DOI: 10.1039/d2ob00309k] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
An enantioselective Mannich addition of 3,5-disubstituted 4-nitroisoxazoles to β,γ-alkynyl-α-ketimino esters promoted by an amide phosphonium salt-based catalyst has been developed. N-Cbz-protected ketimino esters with various aryl substituents attached to the alkyne unit were reacted with a series of isoxazoles with different substitution patterns. Chiral tertiary propargylic amine products were obtained with moderate to good yields and enantioselectivities. TIPS- and cyclopropyl-substituted alkynyl ketimines were also examined in the current system and the desired products were obtained with moderate yields and enantioselectivities. The potential scalability and utility of the current protocol were demonstrated by carrying out a relatively larger scale reaction followed by further transformations.
Collapse
Affiliation(s)
- Congzheng Gu
- Center for Supramolecular Chemistry and Catalysis and Department of Chemistry, College of Sciences, Shanghai University, 99 Shangda Lu, Shanghai 200444, People's Republic of China.
| | - Guangzheng Tian
- Center for Supramolecular Chemistry and Catalysis and Department of Chemistry, College of Sciences, Shanghai University, 99 Shangda Lu, Shanghai 200444, People's Republic of China.
| | - Qingyu Yin
- Center for Supramolecular Chemistry and Catalysis and Department of Chemistry, College of Sciences, Shanghai University, 99 Shangda Lu, Shanghai 200444, People's Republic of China.
| | - Fan Wu
- Center for Supramolecular Chemistry and Catalysis and Department of Chemistry, College of Sciences, Shanghai University, 99 Shangda Lu, Shanghai 200444, People's Republic of China.
| | - Zhiming Li
- Center for Supramolecular Chemistry and Catalysis and Department of Chemistry, College of Sciences, Shanghai University, 99 Shangda Lu, Shanghai 200444, People's Republic of China.
| | - Xiaoyu Wu
- Center for Supramolecular Chemistry and Catalysis and Department of Chemistry, College of Sciences, Shanghai University, 99 Shangda Lu, Shanghai 200444, People's Republic of China.
| |
Collapse
|
16
|
Tan JP, Li K, Shen B, Zhuang C, Liu Z, Xiao K, Yu P, Yi B, Ren X, Wang T. Asymmetric synthesis of N-bridged [3.3.1] ring systems by phosphonium salt/Lewis acid relay catalysis. Nat Commun 2022; 13:357. [PMID: 35042870 PMCID: PMC8766524 DOI: 10.1038/s41467-022-28001-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 12/16/2021] [Indexed: 02/05/2023] Open
Abstract
Optically pure pseudo-natural products (PNPs), particularly exemplified by azabicyclo[3.3.1]nonane molecules and their analogs provide an attractive platform for structure-activity relationship studies, and also lead new compound discovery in drug development. However, there are currently no examples of guiding catalytic asymmetric strategies available to construct such important PN-scaffolds, thus limiting their broad use. Here, we report a general and modular method for constructing these pseudo-natural N-bridged [3.3.1] ring systems via cascade process by bifunctional phosphonium salt/Lewis acid relay catalysis. A wide variety of substrates bearing an assortment of functional groups (59 examples) are compatible with this protocol. Other features include a [3 + 2] cyclization/ring-opening/Friedel-Crafts cascade pathway, excellent reactivities and stereoselectivities, easily available starting materials, step economy and scalability. The obtained enantioenriched products showed potential of preliminary anticancer activities. Insights gained from our studies are expected to advance general efforts towards the catalytic synthesis of challenging even unprecedented chiral PNPs, offering new opportunities for bioactive small-molecule discovery.
Collapse
Affiliation(s)
- Jian-Ping Tan
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu, P. R. China
- Hunan Province Key Laboratory of Environmental Catalysis and Waste Recycling, College of Materials and Chemical Engineering, Hunan Institute of Engineering, Xiangtan, P. R. China
| | - Kehan Li
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu, P. R. China
| | - Boming Shen
- Department of Chemistry and Shenzhen Grubbs Institute, Southern University of Science and Technology, Shenzhen, 518055, P. R. China
| | - Cheng Zhuang
- Precision Medicine Research Center & Sichuan Provincial Key Laboratory of Precision Medicine, West China Hospital, Sichuan University, Chengdu, 610041, P. R. China
| | - Zanjiao Liu
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu, P. R. China
| | - Kai Xiao
- Precision Medicine Research Center & Sichuan Provincial Key Laboratory of Precision Medicine, West China Hospital, Sichuan University, Chengdu, 610041, P. R. China
| | - Peiyuan Yu
- Department of Chemistry and Shenzhen Grubbs Institute, Southern University of Science and Technology, Shenzhen, 518055, P. R. China.
| | - Bing Yi
- Hunan Province Key Laboratory of Environmental Catalysis and Waste Recycling, College of Materials and Chemical Engineering, Hunan Institute of Engineering, Xiangtan, P. R. China.
| | - Xiaoyu Ren
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu, P. R. China
| | - Tianli Wang
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu, P. R. China.
- Beijing National Laboratory for Molecular Sciences, Beijing, 100190, China.
| |
Collapse
|
17
|
Li D, Luo K, Zhang L, Gao J, Liang J, Li J, Pan H. Research and Application of Highly Selective Molecular Imprinting Technology in Chiral Separation Analysis. Crit Rev Anal Chem 2021; 53:1066-1079. [PMID: 34802340 DOI: 10.1080/10408347.2021.2002680] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/21/2023]
Abstract
Since residual chiral pollutants in the environment and toxic or ineffective chiral components in drugs can threat human health, there is an urgent need for methods to separation and analyze chiral molecules. Molecular imprinting technology (MIT) is a biomimetic technique for specific recognition of analytes with high potential for application in the field of chiral separation and analysis. However, since MIT has some disadvantages when used for chiral recognition, such as poor rigidity of imprinted materials, a single type of recognition site, and poor stereoselectivity, reducing the interference of conformationally and structurally similar substances to increase the efficiency of chiral recognition is difficult. Therefore, improving the rigidity of imprinted materials, increasing the types of imprinted cavity recognition sites, and constructing an imprinted microenvironment for highly selective chiral recognition are necessary for the accurate identification of chiral substances. In this article, the principle of chiral imprinting recognition is introduced, and various strategies that improve the selectivity of chiral imprinting, using derivative functional monomers, supramolecular compounds, chiral assembly materials, and biomolecules, are reviewed in the past 10 years.
Collapse
Affiliation(s)
- Dan Li
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, China
| | - Kui Luo
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, China
| | - Lianming Zhang
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, China
| | - Jingxia Gao
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, China
| | - Jinlu Liang
- School of Petroleum and Chemical Engineering, BeiBu Gulf University, Qinzhou, China
| | - Jianping Li
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, China
| | - Hongcheng Pan
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, China
| |
Collapse
|
18
|
Yu L, Liu J, Wang H, Xu L, Wu Y, Zheng C, Zhao G. Asymmetric Dieckmann Condensation towards Spirocyclic Oxindoles Catalyzed by Amino Acid‐Derived Phosphonium Salts. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202101031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Longhui Yu
- Key Laboratory of Synthetic Chemistry of Natural Substances Shanghai Institute of Organic Chemistry Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 People's Republic of China
| | - Jun Liu
- Key Laboratory of Synthetic Chemistry of Natural Substances Shanghai Institute of Organic Chemistry Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 People's Republic of China
| | - Hongyu Wang
- Key Laboratory of Synthetic Chemistry of Natural Substances Shanghai Institute of Organic Chemistry Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 People's Republic of China
| | - Lijun Xu
- Key Laboratory of Synthetic Chemistry of Natural Substances Shanghai Institute of Organic Chemistry Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 People's Republic of China
| | - Yufei Wu
- Key Laboratory of Synthetic Chemistry of Natural Substances Shanghai Institute of Organic Chemistry Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 People's Republic of China
| | - Changwu Zheng
- Innovation Research Institute of Traditional Chinese Medicine School of Pharmacy Shanghai University of Traditional Chinese Medicine Shanghai 201203 People's Republic of China
| | - Gang Zhao
- Key Laboratory of Synthetic Chemistry of Natural Substances Shanghai Institute of Organic Chemistry Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 People's Republic of China
- Innovation Research Institute of Traditional Chinese Medicine School of Pharmacy Shanghai University of Traditional Chinese Medicine Shanghai 201203 People's Republic of China
| |
Collapse
|
19
|
Chen Y, Yu Z, Jiang Z, Tan JP, Wu JH, Lan Y, Ren X, Wang T. Asymmetric Construction of Tertiary/Secondary Carbon–Phosphorus Bonds via Bifunctional Phosphonium Salt Catalyzed 1,6-Addition. ACS Catal 2021. [DOI: 10.1021/acscatal.1c03149] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Yuan Chen
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu 610064, People’s Republic of China
| | - Zhaoyuan Yu
- Green Catalysis Center and College of Chemistry, Zhengzhou University, Zhengzhou 450001, People’s Republic of China
| | - Zhiyu Jiang
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu 610064, People’s Republic of China
| | - Jian-Ping Tan
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu 610064, People’s Republic of China
| | - Jia-Hong Wu
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu 610064, People’s Republic of China
| | - Yu Lan
- Green Catalysis Center and College of Chemistry, Zhengzhou University, Zhengzhou 450001, People’s Republic of China
- School of Chemistry and Chemical Engineering, Chongqing Key Laboratory of Theoretical and Computational Chemistry, Chongqing University, Chongqing 400030, People’s Republic of China
| | - Xiaoyu Ren
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu 610064, People’s Republic of China
| | - Tianli Wang
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu 610064, People’s Republic of China
| |
Collapse
|
20
|
Duan H, Lin Y, Zhao Z, Wang J, Wei Z, Cao J, Liang D. Asymmetric Synthesis of 3-Phenyl-2,3-dihydro-1H-pyrrolo[3,2-b]pyridine-3-carbonitriles Catalyzed by Phase-Transfer Catalyst Derived from tert-Leucine. Synlett 2021. [DOI: 10.1055/a-1581-2345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
AbstractChiral phase-transfer catalysts derived from tert-leucine were synthesized and used in the asymmetric synthesis of 4-azaindoline derivatives. By this method, both enantiomers of the corresponding products were obtained in excellent yield (up to 99%) with high enantioselectivities (up to 91% ee) and diastereoselectivities (up to >99: 1 dr).
Collapse
|
21
|
Yin Q, Wen X, Chen Y, Gong X, Hu L. Phase-Transfer Catalyzed Asymmetric [4 + 1] Annulations for the Synthesis of Chiral 2,2-Disubstituted Tetrahydrothiophenes. Org Lett 2021; 23:7529-7534. [PMID: 34529440 DOI: 10.1021/acs.orglett.1c02744] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
An efficient catalytic asymmetric [4 + 1] reaction, which features the use of simple β-keto esters as one-carbon nucleophiles and 5-succinimidothio-pent-2-enoates as four-atom bielectrophiles, has been developed in the presence of a bifunctional chiral phase-transfer catalyst. The new annulation provides a distinct protocol to access the functionalized 2-acyl-2-carboxyl tetrahydrothiophenes bearing consecutive quaternary and tertiary carbon stereocenters in high diastereoselectivities and enantioselectivities. Moreover, the prepared products could be readily transformed into the chiral 2-alkyl-2-carboxyl tetrahydrothiophenes via two steps of debenzoylation and alkylation reactions.
Collapse
Affiliation(s)
- Qi Yin
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
| | - Xiaolu Wen
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
| | - Yiwei Chen
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
| | - Xiangnan Gong
- Analytical and Testing Center, Chongqing University, Chongqing 401331, China
| | - Lin Hu
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
| |
Collapse
|
22
|
Zhu Y, Wang H, Wang G, Wang Z, Liu Z, Liu L. Enantioselective Construction of Single and Vicinal All-Carbon Quaternary Stereocenters through Ion-Pair-Catalyzed 1,6-Conjugate Addition. Org Lett 2021; 23:7248-7253. [PMID: 34460272 DOI: 10.1021/acs.orglett.1c02640] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
An asymmetric 1,6-conjugate addition to presynthesized δ-aryl-δ-cyano-disubstituted para-quinone methides through bifunctional phosphonium-amide-promoted ion-pair catalysis for acyclic all-carbon quaternary stereocenter construction has been described. Both acyclic and cyclic 1,3-dicarbonyls participate in the asymmetric alkylation reaction, furnishing a wide array of diarylmethanes bearing a single acyclic quaternary carbon stereocenter or vicinal cyclic and acyclic quaternary carbon stereocenters with high efficiency and excellent stereoselectivity. Computational studies elucidate the origin of the enantioselectivity.
Collapse
Affiliation(s)
- Yasheng Zhu
- School of Pharmaceutical Sciences, Shandong University, Jinan 250012, China
| | - Hongliang Wang
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Gang Wang
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Zehua Wang
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Zhaopeng Liu
- School of Pharmaceutical Sciences, Shandong University, Jinan 250012, China
| | - Lei Liu
- School of Pharmaceutical Sciences, Shandong University, Jinan 250012, China.,School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China.,Shenzhen Research Institute of Shandong University, Shenzhen 518057, China
| |
Collapse
|
23
|
Zhang H, He J, Chen Y, Zhuang C, Jiang C, Xiao K, Su Z, Ren X, Wang T. Regio‐ and Stereoselective Cascade of β,γ‐Unsaturated Ketones by Dipeptided Phosphonium Salt Catalysis: Stereospecific Construction of Dihydrofuro‐Fused [2,3‐b] Skeletons. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202106046] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Hongkui Zhang
- Key Laboratory of Green Chemistry & Technology of Ministry of Education College of Chemistry Sichuan University 29 Wangjiang Road Chengdu 610064 P. R. China
| | - Jiajia He
- Key Laboratory of Green Chemistry & Technology of Ministry of Education College of Chemistry Sichuan University 29 Wangjiang Road Chengdu 610064 P. R. China
| | - Yayun Chen
- Key Laboratory of Green Chemistry & Technology of Ministry of Education College of Chemistry Sichuan University 29 Wangjiang Road Chengdu 610064 P. R. China
- School of Environmental and Chemical Engineering Jiangsu University of Science and Technology Zhenjiang 212003 P. R. China
| | - Cheng Zhuang
- National Chengdu Center for Safety Evaluation of Drugs and National Clinical Research Center for Geriatrics West China Hospital Sichuan University Chengdu 610064 P. R. China
| | - Chunhui Jiang
- School of Environmental and Chemical Engineering Jiangsu University of Science and Technology Zhenjiang 212003 P. R. China
| | - Kai Xiao
- National Chengdu Center for Safety Evaluation of Drugs and National Clinical Research Center for Geriatrics West China Hospital Sichuan University Chengdu 610064 P. R. China
| | - Zhishan Su
- Key Laboratory of Green Chemistry & Technology of Ministry of Education College of Chemistry Sichuan University 29 Wangjiang Road Chengdu 610064 P. R. China
| | - Xiaoyu Ren
- Key Laboratory of Green Chemistry & Technology of Ministry of Education College of Chemistry Sichuan University 29 Wangjiang Road Chengdu 610064 P. R. China
| | - Tianli Wang
- Key Laboratory of Green Chemistry & Technology of Ministry of Education College of Chemistry Sichuan University 29 Wangjiang Road Chengdu 610064 P. R. China
| |
Collapse
|
24
|
Bencivenni G, Salazar Illera D, Moccia M, Houk KN, Izzo JA, Novacek J, Grieco P, Vetticatt MJ, Waser M, Adamo MFA. Study of Ground State Interactions of Enantiopure Chiral Quaternary Ammonium Salts and Amides, Nitroalkanes, Nitroalkenes, Esters, Heterocycles, Ketones and Fluoroamides. Chemistry 2021; 27:11352-11366. [PMID: 33963788 PMCID: PMC8453964 DOI: 10.1002/chem.202100908] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Indexed: 11/21/2022]
Abstract
Chiral phase-transfer catalysis provides high level of enantiocontrol, however no experimental data showed the interaction of catalysts and substrates. 1 H NMR titration was carried out on Cinchona and Maruoka ammonium bromides vs. nitro, carbonyl, heterocycles, and N-F containing compounds. It was found that neutral organic species and quaternary ammonium salts interacted via an ensemble of catalyst + N-C-H and (sp2 )C-H, specific for each substrate studied. The correspondent BArF salts interacted with carbonyls via a diverse set of + N-C-H and (sp2 )C-H compared to bromides. This data suggests that BArF ammonium salts may display a different enantioselectivity profile. Although not providing quantitative data for the affinity constants, the data reported proofs that chiral ammonium salts coordinate with substrates, prior to transition state, through specific C-H positions in their structures, providing a new rational to rationalize the origin of enantioselectivity in their catalyses.
Collapse
Affiliation(s)
- Grazia Bencivenni
- Department of ChemistryRCSIUniversity of Medicine and Health Science123 St Stephen's GreenDublin 2, DublinRepublic of Ireland
| | - Diana Salazar Illera
- Department of ChemistryRCSIUniversity of Medicine and Health Science123 St Stephen's GreenDublin 2, DublinRepublic of Ireland
| | - Maria Moccia
- CNR-ICCInstitute of CrystallographyVia G. Amendola 122/O70126BariItaly
| | - K. N. Houk
- Department of Chemistry and BiochemistryUniversity of California, Los AngelesLos AngelesCA 90095-1569USA
| | - Joseph A. Izzo
- Department of ChemistryState University of NY BinghamtonBinghamton, NYUSA
| | - Johanna Novacek
- Institute of Organic ChemistryJohannes Kepler University LinzAltenbergerstrasse 694040LinzAustria
| | - Paolo Grieco
- Faculty of PharmacyUniversity of Naples Federico IICorso Umberto I, 4080138Napoli, NAItaly
| | | | - Mario Waser
- Institute of Organic ChemistryJohannes Kepler University LinzAltenbergerstrasse 694040LinzAustria
| | - Mauro F. A. Adamo
- Department of ChemistryRCSIUniversity of Medicine and Health Science123 St Stephen's GreenDublin 2, DublinRepublic of Ireland
| |
Collapse
|
25
|
Zhang S, Feng Z, Jiang C, Yu X, Pan J, Du J, Jiang Z, Chen Y, Wang T. Highly Enantioselective Synthesis of Phosphorus-Containing ϵ-Benzosultams by Bifunctional Phosphonium Salt-Promoted Hydrophosphonylation. Chemistry 2021; 27:11285-11290. [PMID: 34009722 DOI: 10.1002/chem.202101038] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Indexed: 12/15/2022]
Abstract
ϵ-Benzosultam derivatives are potential drug candidates with diverse biological activities. A series of chiral ϵ-benzosultams bearing phosphorus functionalities was synthesized by catalytic asymmetric hydrophosphonylation in the presence of a bifunctional phosphonium salt catalyst. The desired hydrophosphonylation products were obtained in good yields with high enantioselectivities, and scale-up reactions and further derivations were successfully accomplished. Some control experiments were also conducted to elucidate the plausible reaction mechanism of this chemical transformation.
Collapse
Affiliation(s)
- Song Zhang
- Key Laboratory of Green Chemistry & Technology of Ministry of Education College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu, 610064, P. R. China
| | - Zhenghuai Feng
- Key Laboratory of Green Chemistry & Technology of Ministry of Education College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu, 610064, P. R. China
| | - Chunhui Jiang
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, 212003, P. R. China
| | - Xiaojun Yu
- Department of Chemistry School of Basic Medical Sciences, Southwest Medical University, 1 Xianglin Road, Luzhou, 646000, P. R. China
| | - Jianke Pan
- Key Laboratory of Green Chemistry & Technology of Ministry of Education College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu, 610064, P. R. China
| | - Juan Du
- Key Laboratory of Green Chemistry & Technology of Ministry of Education College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu, 610064, P. R. China
| | - Zhiyu Jiang
- Key Laboratory of Green Chemistry & Technology of Ministry of Education College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu, 610064, P. R. China
| | - Yuan Chen
- Key Laboratory of Green Chemistry & Technology of Ministry of Education College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu, 610064, P. R. China
| | - Tianli Wang
- Key Laboratory of Green Chemistry & Technology of Ministry of Education College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu, 610064, P. R. China
| |
Collapse
|
26
|
Zhang H, He J, Chen Y, Zhuang C, Jiang C, Xiao K, Su Z, Ren X, Wang T. Regio- and Stereoselective Cascade of β,γ-Unsaturated Ketones by Dipeptided Phosphonium Salt Catalysis: Stereospecific Construction of Dihydrofuro-Fused [2,3-b] Skeletons. Angew Chem Int Ed Engl 2021; 60:19860-19870. [PMID: 34213051 DOI: 10.1002/anie.202106046] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 06/23/2021] [Indexed: 02/06/2023]
Abstract
Chiral (dihydro)furo-fused heterocycles are significant structural motifs in numerous natural products, functional materials and pharmaceuticals. Therefore, developing efficient methods for preparing compounds with these privileged scaffolds is an important endeavor in synthetic chemistry. Herein, we develop an effective, modular method by a dipeptide-phosphonium salt-catalyzed regio- and stereoselective cascade reaction of readily available linear β,γ-unsaturated ketones with aromatic alkenes, affording a wide variety of structurally fused heterocyclic molecules in high yields with excellent stereoselectivities. Moreover, mechanistic investigations revealed that the bifunctional phosphonium salt controlled the regio- and stereoselectivities of this cascade reaction, particularly proceeding through the initial ketone α-addition followed by O-participated substitution; and the multiple hydrogen-bonding interactions between Brønsted acid moieties of catalyst and nitro group of aromatic alkene were crucial in asymmetric induction. Given the generality, versatility, and high efficiency of this method, we anticipate that it will have broad synthetic utilities.
Collapse
Affiliation(s)
- Hongkui Zhang
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu, 610064, P. R. China
| | - Jiajia He
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu, 610064, P. R. China
| | - Yayun Chen
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu, 610064, P. R. China.,School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212003, P. R. China
| | - Cheng Zhuang
- National Chengdu Center for Safety Evaluation of Drugs and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610064, P. R. China
| | - Chunhui Jiang
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212003, P. R. China
| | - Kai Xiao
- National Chengdu Center for Safety Evaluation of Drugs and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610064, P. R. China
| | - Zhishan Su
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu, 610064, P. R. China
| | - Xiaoyu Ren
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu, 610064, P. R. China
| | - Tianli Wang
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu, 610064, P. R. China
| |
Collapse
|
27
|
Fang S, Tan J, Pan J, Zhang H, Chen Y, Ren X, Wang T. Enantiodivergent Kinetic Resolution of 1,1′‐Biaryl‐2,2′‐Diols and Amino Alcohols by Dipeptide‐Phosphonium Salt Catalysis Inspired by the Atherton–Todd Reaction. Angew Chem Int Ed Engl 2021; 60:14921-14930. [DOI: 10.1002/anie.202102352] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Indexed: 12/20/2022]
Affiliation(s)
- Siqiang Fang
- Key Laboratory of Green Chemistry & Technology of Ministry of Education College of Chemistry Sichuan University 29 Wangjiang Road Chengdu 610064 P. R. China
| | - Jian‐Ping Tan
- Key Laboratory of Green Chemistry & Technology of Ministry of Education College of Chemistry Sichuan University 29 Wangjiang Road Chengdu 610064 P. R. China
- Hunan Province Key Laboratory of Environmental Catalysis and Waste Recycling College of Materials and Chemical Engineering Hunan Institute of Engineering Xiangtan 411104 P. R. China
| | - Jianke Pan
- Key Laboratory of Green Chemistry & Technology of Ministry of Education College of Chemistry Sichuan University 29 Wangjiang Road Chengdu 610064 P. R. China
| | - Hongkui Zhang
- Key Laboratory of Green Chemistry & Technology of Ministry of Education College of Chemistry Sichuan University 29 Wangjiang Road Chengdu 610064 P. R. China
| | - Yuan Chen
- Key Laboratory of Green Chemistry & Technology of Ministry of Education College of Chemistry Sichuan University 29 Wangjiang Road Chengdu 610064 P. R. China
| | - Xiaoyu Ren
- Key Laboratory of Green Chemistry & Technology of Ministry of Education College of Chemistry Sichuan University 29 Wangjiang Road Chengdu 610064 P. R. China
| | - Tianli Wang
- Key Laboratory of Green Chemistry & Technology of Ministry of Education College of Chemistry Sichuan University 29 Wangjiang Road Chengdu 610064 P. R. China
| |
Collapse
|
28
|
Fang S, Tan J, Pan J, Zhang H, Chen Y, Ren X, Wang T. Enantiodivergent Kinetic Resolution of 1,1′‐Biaryl‐2,2′‐Diols and Amino Alcohols by Dipeptide‐Phosphonium Salt Catalysis Inspired by the Atherton–Todd Reaction. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202102352] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Siqiang Fang
- Key Laboratory of Green Chemistry & Technology of Ministry of Education College of Chemistry Sichuan University 29 Wangjiang Road Chengdu 610064 P. R. China
| | - Jian‐Ping Tan
- Key Laboratory of Green Chemistry & Technology of Ministry of Education College of Chemistry Sichuan University 29 Wangjiang Road Chengdu 610064 P. R. China
- Hunan Province Key Laboratory of Environmental Catalysis and Waste Recycling College of Materials and Chemical Engineering Hunan Institute of Engineering Xiangtan 411104 P. R. China
| | - Jianke Pan
- Key Laboratory of Green Chemistry & Technology of Ministry of Education College of Chemistry Sichuan University 29 Wangjiang Road Chengdu 610064 P. R. China
| | - Hongkui Zhang
- Key Laboratory of Green Chemistry & Technology of Ministry of Education College of Chemistry Sichuan University 29 Wangjiang Road Chengdu 610064 P. R. China
| | - Yuan Chen
- Key Laboratory of Green Chemistry & Technology of Ministry of Education College of Chemistry Sichuan University 29 Wangjiang Road Chengdu 610064 P. R. China
| | - Xiaoyu Ren
- Key Laboratory of Green Chemistry & Technology of Ministry of Education College of Chemistry Sichuan University 29 Wangjiang Road Chengdu 610064 P. R. China
| | - Tianli Wang
- Key Laboratory of Green Chemistry & Technology of Ministry of Education College of Chemistry Sichuan University 29 Wangjiang Road Chengdu 610064 P. R. China
| |
Collapse
|
29
|
Jiang Z, Liu X, Zhang H, Tan J, Ren X, Gao G, Wang T. Bifunctinoal Phosphonium Salt‐Catalyzed Asymmetric Cyclodearomatization of 2‐Nitroindoles and 2‐Nitrobenzofurans for Constructing CF
3
‐Containing Spiro‐Polycycles. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202100328] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Zhiyu Jiang
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry Sichuan University 29 Wangjiang Road Chengdu 610064 People's Republic of China
| | - Xin Liu
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry Sichuan University 29 Wangjiang Road Chengdu 610064 People's Republic of China
| | - Hongkui Zhang
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry Sichuan University 29 Wangjiang Road Chengdu 610064 People's Republic of China
| | - Jian‐Ping Tan
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry Sichuan University 29 Wangjiang Road Chengdu 610064 People's Republic of China
- Hunan Province Key Laboratory of Environmental Catalysis and Waste Recycling College of Materials and Chemical Engineering, Hunan Institute of Engineering Xiangtan 411104 People's Republic of China
| | - Xiaoyu Ren
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry Sichuan University 29 Wangjiang Road Chengdu 610064 People's Republic of China
| | - Guowei Gao
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry Sichuan University 29 Wangjiang Road Chengdu 610064 People's Republic of China
| | - Tianli Wang
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry Sichuan University 29 Wangjiang Road Chengdu 610064 People's Republic of China
| |
Collapse
|
30
|
Eitzinger A, Otevrel J, Haider V, Macchia A, Massa A, Faust K, Spingler B, Berkessel A, Waser M. Enantioselective Bifunctional Ammonium Salt-Catalyzed Syntheses of 3-CF 3S-, 3-RS-, and 3-F-Substituted Isoindolinones. Adv Synth Catal 2021; 363:1955-1962. [PMID: 33897314 PMCID: PMC8050839 DOI: 10.1002/adsc.202100029] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 02/09/2021] [Indexed: 01/12/2023]
Abstract
We herein report the ammonium salt-catalyzed synthesis of chiral 3,3-disubstituted isoindolinones bearing a heteroatom functionality in the 3-position. A broad variety of differently substituted CF3S- and RS-derivatives were obtained with often high enantioselectivities when using Maruoka's bifunctional chiral ammonium salt catalyst. In addition, a first proof-of-concept for the racemic synthesis of the analogous F-containing products was obtained as well, giving access to one of the rare examples of a fairly stable α-F-α-amino acid derivative.
Collapse
Affiliation(s)
- Andreas Eitzinger
- Institute of Organic ChemistryJohannes Kepler University LinzAltenbergerstr. 694040LinzAustria
| | - Jan Otevrel
- Institute of Organic ChemistryJohannes Kepler University LinzAltenbergerstr. 694040LinzAustria
- Department of Chemical DrugsFaculty of PharmacyMasaryk UniversityPalackeho 1946/1612 00BrnoCzechia
| | - Victoria Haider
- Institute of Organic ChemistryJohannes Kepler University LinzAltenbergerstr. 694040LinzAustria
| | - Antonio Macchia
- Dipartimento di Chimica e BiologiaUniversità di SalernoVia Giovanni Paolo II, 13284084FiscianoSAItaly
| | - Antonio Massa
- Dipartimento di Chimica e BiologiaUniversità di SalernoVia Giovanni Paolo II, 13284084FiscianoSAItaly
| | - Kirill Faust
- Institute of CatalysisJohannes Kepler University LinzAltenbergerstr. 694040LinzAustria
| | - Bernhard Spingler
- Department of ChemistryUniversity of ZurichWinterthurerstrasse 1908057ZurichSwitzerland
| | - Albrecht Berkessel
- Department of ChemistryCologne UniversityGreinstrasse 450939CologneGermany
| | - Mario Waser
- Institute of Organic ChemistryJohannes Kepler University LinzAltenbergerstr. 694040LinzAustria
| |
Collapse
|
31
|
Affiliation(s)
- Maozhong Sun
- International Joint Research Laboratory for Biointerface and Biodetection Jiangnan University Wuxi Jiangsu 214122 China
- State Key Laboratory of Food Science and Technology Jiangnan University Wuxi Jiangsu 214122 China
| | - Si Li
- International Joint Research Laboratory for Biointerface and Biodetection Jiangnan University Wuxi Jiangsu 214122 China
- State Key Laboratory of Food Science and Technology Jiangnan University Wuxi Jiangsu 214122 China
| | - Changlong Hao
- International Joint Research Laboratory for Biointerface and Biodetection Jiangnan University Wuxi Jiangsu 214122 China
- State Key Laboratory of Food Science and Technology Jiangnan University Wuxi Jiangsu 214122 China
| | - Chuanlai Xu
- International Joint Research Laboratory for Biointerface and Biodetection Jiangnan University Wuxi Jiangsu 214122 China
- State Key Laboratory of Food Science and Technology Jiangnan University Wuxi Jiangsu 214122 China
| | - Hua Kuang
- International Joint Research Laboratory for Biointerface and Biodetection Jiangnan University Wuxi Jiangsu 214122 China
- State Key Laboratory of Food Science and Technology Jiangnan University Wuxi Jiangsu 214122 China
| |
Collapse
|
32
|
A flexible strategy for the synthesis of bifunctional 6′-(thio)-urea containing Cinchona alkaloid ammonium salts. Tetrahedron 2020. [DOI: 10.1016/j.tet.2019.130816] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
33
|
Meng X, Luo Y, Zhao G. Amino acids derived chiral bifunctional (thio)urea tertiary-amines catalyzed asymmetric henry reaction of α-trifluoromethy ketones. Tetrahedron Lett 2020. [DOI: 10.1016/j.tetlet.2020.152485] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
34
|
A novel quaternary ammonium salts derived from α-amino acids with large steric hindrance group and its application in asymmetric Mannich reaction. Tetrahedron 2020. [DOI: 10.1016/j.tet.2020.131484] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
35
|
Haider V, Kreuzer V, Tiffner M, Spingler B, Waser M. Ammonium Salt-Catalyzed Ring-Opening of Aryl-Aziridines with β-Keto Esters. European J Org Chem 2020; 2020:5173-5177. [PMID: 32982577 PMCID: PMC7508174 DOI: 10.1002/ejoc.202000916] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Indexed: 02/03/2023]
Abstract
We herein report an ammonium salt-catalyzed protocol for the regioselective ring opening of aryl-aziridines with β-keto esters. The reaction gives access to a variety of highly functionalized target molecules with two consecutive stereo-genic centers and can be rendered enantioselective (up to e.r. = 91:9) by using bifunctional chiral ammonium salt catalysts.
Collapse
Affiliation(s)
- Victoria Haider
- Institute of Organic ChemistryJohannes Kepler University LinzAltenbergerstr. 694040LinzAustria
| | - Viktoria Kreuzer
- Institute of Organic ChemistryJohannes Kepler University LinzAltenbergerstr. 694040LinzAustria
| | - Maximilian Tiffner
- Institute of Organic ChemistryJohannes Kepler University LinzAltenbergerstr. 694040LinzAustria
| | - Bernhard Spingler
- Department of ChemistryUniversity of ZurichWinterthurerstrasse 1908057ZurichSwitzerland
| | - Mario Waser
- Institute of Organic ChemistryJohannes Kepler University LinzAltenbergerstr. 694040LinzAustria
| |
Collapse
|
36
|
Mairhofer C, Novacek J, Waser M. Synergistic Ammonium (Hypo)Iodite/Imine Catalysis for the Asymmetric α-Hydroxylation of β-Ketoesters. Org Lett 2020; 22:6138-6142. [PMID: 32706973 PMCID: PMC7418104 DOI: 10.1021/acs.orglett.0c02198] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Indexed: 12/14/2022]
Abstract
The synergistic use of chiral bifunctional ammonium iodide catalysts in combination with simple catalytically relevant aldimines allows for an unprecedented asymmetric α-hydroxylation reaction of β-ketoesters using H2O2. The reaction proceeds via in situ formation of a hypervalent iodine species, which then reacts with the used aldimine to generate an activated electrophilic oxygen transfer reagent.
Collapse
Affiliation(s)
- Christopher Mairhofer
- Institute of Organic Chemistry, Johannes Kepler University Linz, Altenbergerstr. 69, 4040 Linz, Austria
| | | | - Mario Waser
- Institute of Organic Chemistry, Johannes Kepler University Linz, Altenbergerstr. 69, 4040 Linz, Austria
| |
Collapse
|
37
|
Tan JP, Li X, Chen Y, Rong X, Zhu L, Jiang C, Xiao K, Wang T. Highly stereoselective construction of polycyclic benzofused tropane scaffolds and their latent bioactivities: bifunctional phosphonium salt-enabled cyclodearomatization process. Sci China Chem 2020. [DOI: 10.1007/s11426-020-9754-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
38
|
Liu X, Lu D, Wu J, Tan J, Jiang C, Gao G, Wang T. Stereoselective Synthesis of CF
3
‐Containing Spirooxindoles via 1,3‐Dipolar Cycloaddition by Dipeptide‐Based Phosphonium Salt Catalysis. Adv Synth Catal 2020. [DOI: 10.1002/adsc.202000001] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Xin Liu
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of ChemistrySichuan University 29 Wangjiang Road Chengdu 610064 People's Republic of China
| | - Dongming Lu
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of ChemistrySichuan University 29 Wangjiang Road Chengdu 610064 People's Republic of China
| | - Jia‐Hong Wu
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of ChemistrySichuan University 29 Wangjiang Road Chengdu 610064 People's Republic of China
| | - Jian‐Ping Tan
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of ChemistrySichuan University 29 Wangjiang Road Chengdu 610064 People's Republic of China
| | - Chunhui Jiang
- School of Environmental and Chemical EngineeringJiangsu University of Science and Technology 2 Mengxi Road Zhenjiang 212003 People's Republic of China
| | - Guowei Gao
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of ChemistrySichuan University 29 Wangjiang Road Chengdu 610064 People's Republic of China
| | - Tianli Wang
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of ChemistrySichuan University 29 Wangjiang Road Chengdu 610064 People's Republic of China
| |
Collapse
|
39
|
Lu D, Liu X, Wu J, Zhang S, Tan J, Yu X, Wang T. Asymmetric Construction of Bispiro‐Cyclopropane‐Pyrazolones via a [2+1] Cyclization Reaction by Dipeptide‐Based Phosphonium Salt Catalysis. Adv Synth Catal 2020. [DOI: 10.1002/adsc.202000073] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Dongming Lu
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of ChemistrySichuan University Chengdu 610064 People's Republic of China
| | - Xin Liu
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of ChemistrySichuan University Chengdu 610064 People's Republic of China
| | - Jia‐Hong Wu
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of ChemistrySichuan University Chengdu 610064 People's Republic of China
| | - Song Zhang
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of ChemistrySichuan University Chengdu 610064 People's Republic of China
| | - Jian‐Ping Tan
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of ChemistrySichuan University Chengdu 610064 People's Republic of China
| | - Xiaojun Yu
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of ChemistrySichuan University Chengdu 610064 People's Republic of China
- Department of Chemistry, School of Basic Medical SciencesSouthwest Medical University Luzhou 646000 People's Republic of China
| | - Tianli Wang
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of ChemistrySichuan University Chengdu 610064 People's Republic of China
| |
Collapse
|
40
|
Du M, Yu L, Du T, Li Z, Luo Y, Meng X, Tian Z, Zheng C, Cao W, Zhao G. N-Protecting group tuning of the enantioselectivity in Strecker reactions of trifluoromethyl ketimines to synthesize quaternary α-trifluoromethyl amino nitriles by ion pair catalysis. Chem Commun (Camb) 2020; 56:1581-1584. [PMID: 31934692 DOI: 10.1039/c9cc09151c] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An enantioselective Strecker reaction to construct trifluoromethylated quaternary stereocenters with N-PMP and unexplored N-Boc trifluoromethyl ketimines catalyzed using an organophosphine dual-reagent catalyst has been developed. The enantioselectivities of the corresponding products with the same catalyst could be switched by using different N-protecting groups (N-PMP or N-Boc). The trifluoromethyl amino nitriles were obtained in high yield and high enantioselectivity in a short time and could be easily converted to a variety of useful trifluoromethyl-containing compounds.
Collapse
Affiliation(s)
- Mengyuan Du
- Department of Chemistry, Innovative Drug Research Center, Shanghai University, Shanghai 200444, P. R. China.
| | - Longhui Yu
- Key Laboratory of Synthetic Chemistry of Natural Substances, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, P. R. China.
| | - Ting Du
- Key Laboratory of Synthetic Chemistry of Natural Substances, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, P. R. China.
| | - Zhaokun Li
- Key Laboratory of Synthetic Chemistry of Natural Substances, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, P. R. China.
| | - Yueyang Luo
- Key Laboratory of Synthetic Chemistry of Natural Substances, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, P. R. China.
| | - Xiangyu Meng
- Key Laboratory of Synthetic Chemistry of Natural Substances, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, P. R. China.
| | - Zhengtao Tian
- Key Laboratory of Synthetic Chemistry of Natural Substances, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, P. R. China.
| | - Changwu Zheng
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Weiguo Cao
- Department of Chemistry, Innovative Drug Research Center, Shanghai University, Shanghai 200444, P. R. China.
| | - Gang Zhao
- Key Laboratory of Synthetic Chemistry of Natural Substances, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, P. R. China.
| |
Collapse
|
41
|
Qi SS, Jiang ZH, Chu MM, Wang YF, Chen XY, Ju WZ, Xu DQ. Regioselective catalytic asymmetric N-alkylation of isoxazol-5-ones with para-quinone methides. Org Biomol Chem 2020; 18:2398-2404. [DOI: 10.1039/d0ob00393j] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A highly regioselective and enantioselective N-alkylation of isoxazol-5-ones with para-quinone methides has been developed to obtain enantioenriched N-diarylmethane substituted isoxazolinones with high yields and enantioselectivities.
Collapse
Affiliation(s)
- Suo-Suo Qi
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology
- Key Laboratory of Green Pesticides and Cleaner Production Technology of Zhejiang Province
- Department of Green Chemistry and Technology
- Zhejiang University of Technology
- Hangzhou 310014
| | - Zhen-Hui Jiang
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology
- Key Laboratory of Green Pesticides and Cleaner Production Technology of Zhejiang Province
- Department of Green Chemistry and Technology
- Zhejiang University of Technology
- Hangzhou 310014
| | - Ming-Ming Chu
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology
- Key Laboratory of Green Pesticides and Cleaner Production Technology of Zhejiang Province
- Department of Green Chemistry and Technology
- Zhejiang University of Technology
- Hangzhou 310014
| | - Yi-Feng Wang
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology
- Key Laboratory of Green Pesticides and Cleaner Production Technology of Zhejiang Province
- Department of Green Chemistry and Technology
- Zhejiang University of Technology
- Hangzhou 310014
| | - Xue-Yang Chen
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology
- Key Laboratory of Green Pesticides and Cleaner Production Technology of Zhejiang Province
- Department of Green Chemistry and Technology
- Zhejiang University of Technology
- Hangzhou 310014
| | - Wan-Zhen Ju
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology
- Key Laboratory of Green Pesticides and Cleaner Production Technology of Zhejiang Province
- Department of Green Chemistry and Technology
- Zhejiang University of Technology
- Hangzhou 310014
| | - Dan-Qian Xu
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology
- Key Laboratory of Green Pesticides and Cleaner Production Technology of Zhejiang Province
- Department of Green Chemistry and Technology
- Zhejiang University of Technology
- Hangzhou 310014
| |
Collapse
|
42
|
Lu D, Wu JH, Pan J, Chen X, Ren X, Wang T. Asymmetric synthesis of benzothiazolopyrimidines with high catalytic efficiency and stereoselectivity under bifunctional phosphonium salt systems. Chem Commun (Camb) 2020; 56:11231-11234. [DOI: 10.1039/d0cc04820h] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Bifunctional phosphonium salt-mediated formal [4+2] annulation towards chiral benzothiazolopyrimidine compounds with excellent yields and stereoselectivities.
Collapse
Affiliation(s)
- Dongming Lu
- Key Laboratory of Green Chemistry & Technology of Ministry of Education
- College of Chemistry
- Sichuan University
- Chengdu 610064
- P. R. China
| | - Jia-Hong Wu
- Key Laboratory of Green Chemistry & Technology of Ministry of Education
- College of Chemistry
- Sichuan University
- Chengdu 610064
- P. R. China
| | - Jianke Pan
- Key Laboratory of Green Chemistry & Technology of Ministry of Education
- College of Chemistry
- Sichuan University
- Chengdu 610064
- P. R. China
| | - Xue Chen
- Key Laboratory of Green Chemistry & Technology of Ministry of Education
- College of Chemistry
- Sichuan University
- Chengdu 610064
- P. R. China
| | - Xiaoyu Ren
- Key Laboratory of Green Chemistry & Technology of Ministry of Education
- College of Chemistry
- Sichuan University
- Chengdu 610064
- P. R. China
| | - Tianli Wang
- Key Laboratory of Green Chemistry & Technology of Ministry of Education
- College of Chemistry
- Sichuan University
- Chengdu 610064
- P. R. China
| |
Collapse
|
43
|
Wu JH, Pan J, Du J, Wang X, Wang X, Jiang C, Wang T. Enantioselective Synthesis of Multifunctionalized 4H-Pyrans via Formal [4 + 2] Annulation Process by Bifunctional Phosphonium Salt Catalysis. Org Lett 2019; 22:395-399. [DOI: 10.1021/acs.orglett.9b04079] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jia-Hong Wu
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, P. R. China
| | - Jianke Pan
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, P. R. China
| | - Juan Du
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, P. R. China
| | - Xiaoxia Wang
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, P. R. China
| | - Xuemei Wang
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, P. R. China
| | - Chunhui Jiang
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, P. R. China
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, 2 Mengxi Road, Zhenjiang 212003, P. R. China
| | - Tianli Wang
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, P. R. China
| |
Collapse
|
44
|
Tan J, Zhang H, Jiang Z, Chen Y, Ren X, Jiang C, Wang T. Enantioselective Construction of Spiro[chroman‐thiazolones]: Bifunctional Phosphonium Salt‐Catalyzed [2+4] Annulation between 5‐Alkenyl Thiazolones and
ortho
‐Hydroxyphenyl‐Substituted
para‐
Quinone Methides. Adv Synth Catal 2019. [DOI: 10.1002/adsc.201901413] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Jian‐Ping Tan
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of ChemistrySichuan University Chengdu 610064 People's Republic of China
| | - Hongkui Zhang
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of ChemistrySichuan University Chengdu 610064 People's Republic of China
| | - Zhiyu Jiang
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of ChemistrySichuan University Chengdu 610064 People's Republic of China
| | - Yuan Chen
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of ChemistrySichuan University Chengdu 610064 People's Republic of China
| | - Xiaoyu Ren
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of ChemistrySichuan University Chengdu 610064 People's Republic of China
| | - Chunhui Jiang
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of ChemistrySichuan University Chengdu 610064 People's Republic of China
- School of Environmental and Chemical EngineeringJiangsu University of Science and Technology 2 Mengxi Road Zhenjiang 212003 People's Republic of China
| | - Tianli Wang
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of ChemistrySichuan University Chengdu 610064 People's Republic of China
| |
Collapse
|