1
|
Chaudhary R, Ayushee, Rajendran V, Rangarajan TM. Oxime functionalized Chalcones: Unveiling a new class of Chalcones with potent Antiplasmodial activity against blood-stages of Plasmodium falciparum in culture. Bioorg Med Chem Lett 2025; 121:130143. [PMID: 39978739 DOI: 10.1016/j.bmcl.2025.130143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 01/23/2025] [Accepted: 02/14/2025] [Indexed: 02/22/2025]
Abstract
The Plasmodium falciparum parasite, which is responsible for malaria, has developed resistance to several first-line antimalarial drugs. To address this issue, researchers have been developing novel hybrid molecules that can inhibit parasite growth. In this study, a total of 38 chalcone oxime ethers, consisting of four different types, were evaluated for in vitro blood-stage antiplasmodial activity against P. falciparum (3D7) using SYBR green I assay. The four classes of oxime ethers showed promising to moderate antiplasmodial activity. At least one molecule from each class was potent, with the IC50 values of less than 5 μg/mL. Among the four classes, chalcone-chalconeoxime ethers (CCOE) were the most effective, with the IC50 values of 1.55 μg/mL and 1.4 μg/mL for CCOE-2 and CCOE-5, respectively. The most potent molecules, CKOE-13, COAE-2, CCOE-2, and CCOE-5, were tested against the chloroquine-resistant strain P. falciparum (INDO) exhibited IC50 values of less than 5 μg/mL. Notably, the most potent molecules did not induce hemolysis at concentrations up to 50 μg/mL. These findings highlight a new class of chalconeoxime ethers as potent antiplasmodial agents, warranting further exploration of their biological activities.
Collapse
Affiliation(s)
- Reeta Chaudhary
- Department of Chemistry, Shivaji College, University of Delhi, New Delhi, India
| | - Ayushee
- Department of Chemistry, University of Delhi, Delhi, India
| | - Vinoth Rajendran
- Department of Microbiology, School of Life Sciences, Pondicherry University, Puducherry 605014, India.
| | - T M Rangarajan
- Department of Chemistry, Sri Venkateswara College, University of Delhi, New Delhi, India.
| |
Collapse
|
2
|
Dolakasharia D, Bora U. HFIP mediated oxime ether synthesis: a metal, base and additive free approach. Org Biomol Chem 2025; 23:1622-1626. [PMID: 39569551 DOI: 10.1039/d4ob01556h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2024]
Abstract
Oxime ethers are extensively present as key components in numerous active pharmaceutical ingredients and many other synthetically viable organic compounds. Herein, we present a metal, base and additive free mild C-O bond formation strategy for the synthesis of oxime ethers from various oxime derivatives and tertiary and secondary aryl alcohols. The reaction is carried out in the presence of 1,1,1,3,3,3-hexafluoro-2-propanol (HFIP) as the green solvent at 30 °C. The reaction tolerates both aldoximes and ketoximes including ketoximes bearing heteroatoms, furnishing high yields (up to 99%). The formation of a triphenylmethyl carbocation as an intermediate is supported via UV-Vis spectroscopy. Successful gram-scale synthesis of the oxime ether, low energy input and simple reaction conditions further highlight the potential of this reaction to effectively transition from the laboratory scale to industrial production. A broad substrate scope compatibility was also observed.
Collapse
Affiliation(s)
| | - Utpal Bora
- Department of Chemical Sciences, Tezpur University, Napaam, Tezpur, Assam, 784028, India.
| |
Collapse
|
3
|
Takeda N, Maeda R, Yasui M, Ueda M. Synthesis of oxime ethers via a formal reductive O-H bond insertion of oximes to α-keto esters. Chem Commun (Camb) 2023; 60:172-175. [PMID: 38053438 DOI: 10.1039/d3cc05522a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
This study describes an efficient approach to access oxime ethers via P(III)-mediated O-H bond insertion reaction of oximes with α-keto esters. The strategy involves the protonation of in situ generated Kukhtin-Ramirez adducts, followed by SN2-type reaction. Important features include a good functional group tolerance, operational simplicity, and application to gram scale synthesis and the synthesis of an acaricide.
Collapse
Affiliation(s)
- Norihiko Takeda
- Kobe Pharmaceutical University, Motoyamakita, Higashinada, Kobe 658-8558, Japan.
| | - Ryoya Maeda
- Kobe Pharmaceutical University, Motoyamakita, Higashinada, Kobe 658-8558, Japan.
| | - Motohiro Yasui
- Kobe Pharmaceutical University, Motoyamakita, Higashinada, Kobe 658-8558, Japan.
| | - Masafumi Ueda
- Kobe Pharmaceutical University, Motoyamakita, Higashinada, Kobe 658-8558, Japan.
| |
Collapse
|
4
|
Aldoxime- and hydroxy-functionalized chalcones as highly potent and selective monoamine oxidase-B inhibitors. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.131817] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
5
|
Li Q, Cai BG, Li L, Xuan J. Oxime Ether Synthesis through O-H Functionalization of Oximes with Diazo Esters under Blue LED Irradiation. Org Lett 2021; 23:6951-6955. [PMID: 34382794 DOI: 10.1021/acs.orglett.1c02555] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A green and sustainable oxime ether formation method via the visible-light-promoted O-H functionalization of oximes with diazo esters is described. The reaction occurs under very mild conditions (catalyst- and additive-free) with a high yield and a high functional group tolerance. When the reaction was performed with a cyclic ether as the solvent (e.g., THF, 1,4-dioxane, tetrahydropyran, ect.), an interesting photochemical three-component reaction product was obtained in good yields.
Collapse
Affiliation(s)
- Qian Li
- Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, College of Chemistry & Chemical Engineering, Anhui University, Hefei, Anhui 230601, People's Republic of China
| | - Bao-Gui Cai
- Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, College of Chemistry & Chemical Engineering, Anhui University, Hefei, Anhui 230601, People's Republic of China
| | - Lei Li
- Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, College of Chemistry & Chemical Engineering, Anhui University, Hefei, Anhui 230601, People's Republic of China
| | - Jun Xuan
- Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, College of Chemistry & Chemical Engineering, Anhui University, Hefei, Anhui 230601, People's Republic of China.,Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Ministry of Education, Anhui University, Hefei, 230601, People's Republic of China.,Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, School of Science, Westlake University, 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province, China
| |
Collapse
|
6
|
Xu Z, Xian N, Chen H, Deng G, Huang H. Cu‐Catalyzed
Cascade Cyclization of Ketoxime Acetates and Alkynals Enabling Synthesis of Acylpyrroles. CHINESE J CHEM 2021. [DOI: 10.1002/cjoc.202000660] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- Zhenhua Xu
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University Xiangtan Hunan 411105 China
| | - Ning Xian
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University Xiangtan Hunan 411105 China
| | - Hongbiao Chen
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University Xiangtan Hunan 411105 China
| | - Guo‐Jun Deng
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University Xiangtan Hunan 411105 China
| | - Huawen Huang
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University Xiangtan Hunan 411105 China
| |
Collapse
|
7
|
Novel Class of Chalcone Oxime Ethers as Potent Monoamine Oxidase-B and Acetylcholinesterase Inhibitors. Molecules 2020; 25:molecules25102356. [PMID: 32443652 PMCID: PMC7288026 DOI: 10.3390/molecules25102356] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 05/13/2020] [Accepted: 05/13/2020] [Indexed: 11/16/2022] Open
Abstract
Previously synthesized novel chalcone oxime ethers (COEs) were evaluated for inhibitory activities against monoamine oxidases (MAOs) and acetylcholinesterase (AChE). Twenty-two of the 24 COEs synthesized, except COE-17 and COE-24, had potent and/or significant selective inhibitory effects on MAO-B. COE-6 potently inhibited MAO-B with an IC50 value of 0.018 µM, which was 105, 2.3, and 1.1 times more potent than clorgyline, lazabemide, and pargyline (reference drugs), respectively. COE-7, and COE-22 were also active against MAO-B, both had an IC50 value of 0.028 µM, which was 67 and 1.5 times lower than those of clorgyline and lazabemide, respectively. Most of the COEs exhibited weak inhibitory effects on MAO-A and AChE. COE-13 most potently inhibited MAO-A (IC50 = 0.88 µM) and also significantly inhibited MAO-B (IC50 = 0.13 µM), and it could be considered as a potential nonselective MAO inhibitor. COE-19 and COE-22 inhibited AChE with IC50 values of 5.35 and 4.39 µM, respectively. The selectivity index (SI) of COE-22 for MAO-B was higher than that of COE-6 (SI = 778.6 vs. 222.2), but the IC50 value (0.028 µM) was slightly lower than that of COE-6 (0.018 µM). In reversibility experiments, inhibitions of MAO-B by COE-6 and COE-22 were recovered to the levels of reference reversible inhibitors and both competitively inhibited MAO-B, with Ki values of 0.0075 and 0.010 µM, respectively. Our results show that COE-6 and COE-22 are potent, selective MAO-B inhibitors, and COE-22 is a candidate of dual-targeting molecule for MAO-B and AChE.
Collapse
|